• Title/Summary/Keyword: 메탄 건식 개질

Search Result 8, Processing Time 0.022 seconds

플라즈마를 활용한 $CO_2$ dry reforming

  • Song, Yeong-Hun;Lee, Dae-Hun;Jo, Seong-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.71.1-71.1
    • /
    • 2013
  • 메탄가스와 이산화탄소는 지구온난화 가스이기 때문에 배출규제가 점차 강화될 것으로 전망되고 있다. 또한 이들 가스는 매립지 또는 바이오 공정을 통해 발생되는 가스이기 때문에 단순히 배출을 억제하는 데 그치지 않고 보다 적극적으로 활용해야할 필요성이 있다. 현재 메탄과 이산화탄소를 동시에 활용하는 기술로는 촉매공정을 통해 메탄과 이산화탄소를 수소와 일산화탄소로 전환하는 방법이 대표적이나, 본 공정은 $800{\sim}900^{\circ}C$의 고온조건을 필요로 하고 고압조건에서 다량으로 생성되는 탄소에 의한 촉매 활성도의 저하문제로 인해 해당 기술의 실제 보급에 어려움이 있는 것으로 알려져 있다. 한편, 플라즈마를 활용한 메탄가스 개질(reforming) 기술은 고온 플라즈마인 경우 60~70년 전부터 상용화 사례가 있으며, 저온 플라즈마의 경우는 약 10여 년 전부터 개질반응의 공정온도를 낮추려는 연구를 중심으로 기초연구가 수행되어왔다. 이들 플라즈마를 활용한 메탄개질 기술은 메탄의 직접분해, 부분산화, 수증기 개질 및 건식개질 등으로 분류되는 데, 최근 지구온난화가스인 이산화탄소의 처리에 대한 관심이 높아지면서 이산화탄소를 활용하는 건식개질 기술에 대한 관심이 높아지고 있는 상황이다. 현재 플라즈마 건식개질기술에서 주된 이슈는 높은 전력비용이고, 이를 낮추기 위해 촉매를 활용하거나 플라즈마 발생을 최적화하려는 연구가 진행되고 있다. 본 발표에서는 플라즈마를 활용한 건식개질 기술의 장단점, 실용화 가능성 및 향후의 과제를 다루고 있으며, 이를 위해 기계연구원에서의 연구결과 및 국내외 연구실의 결과를 살펴보았다.

  • PDF

Dry Reforming of Methane over Promoters Added Ni/HY Catalysts (조촉매가 담지된 Ni/HY 촉매상에서 메탄의 건식 개질 반응 연구)

  • Jeong, Heondo
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.213-220
    • /
    • 2017
  • Dry reforming of methane to synthesis gas was investigated over a series of Ni/HY catalysts promoted by Mg, Ca, K and Mn. These catalysts were characterized by XRD, BET, SEM, and TGA analyses before and after the reaction. Conversions and product yields were increased with increasing nickel loading up to 13 wt%. Among the catalysts tested in this work, the Ni-Mg/HY catalyst showed the highest carbon resistance and the most stable catalytic performance. It was revealed that the addition of Mg promoter reduced the nickel particle size and produced the highly dispersed nickel particles, and consequently, retarded the catalyst deactivation.

Study on dry reforming and partial oxidation of methane. (대기압 플라즈마를 이용한 메탄의 건식개질과 부분산화반응의 비교)

  • Hwang, Na-Kyung;Cha, Min-Suk;Lee, Dae-Hoon;Song, Young-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2892-2897
    • /
    • 2008
  • Plasma techniques have been proposed to generate a hydrogen enrich gas to investigate a feasibility of plasma techniques on a fuel reforming, we considered a dry reforming and a partial oxidation with methane in the atmospheric pressure. For these experiments, we employed an arc jet plasma reactor. The effects of input power and oxidizer in each process were investigated by product analysis, including carbon monoxide, hydrogen, ethylene, propane, and acetylene as well as methane and carbon dioxide. In both processes, input electrical power activated the reactions significantly. The increased ratio of the carbon dioxide to methane in the dry reforming doesn't affect to a methane conversion, whereas increased ratio of oxidizer to methane in the partial oxidation was very effective for the reaction. Moreover, for a simultaneous treatment of methane and carbon dioxide, a feasibility of a dry reforming combined with partial oxidation also has been investigated.

  • PDF

Recycle of Carbon Dioxide Using Dry Reforming of Methane (메탄의 건식 개질을 이용한 이산화탄소의 재활용)

  • Kim, Jeongmook;Ryu, Jun-hyung;Lee, In-Beum;Lee, Jae Sung
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • Considerable attention has been given to developing methodologies to reduce the emission of carbon dioxide from industry to meet strengthened environmental regulations. In this article, recent research trends on dry reforming of methane as an alternative method to reduce $CO_2$ emission from large scale industrial processes are addressed. To efficiently provide the energy needed in this strong endothermic reaction without additional $CO_2$ emission, it seems to be desirable to adopt autothermal reaction mode. The produced synthesis gas could be used as a reducing gas, or a feedstock for synthesis of chemicals and fuels.

Methane Dry Reforming over Ru/CeO2 catalysts (Ru/CeO2 촉매를 이용한 메탄 건식 개질)

  • HIEN, NGUYEN THI BICH;JEON, MINA;RIDWAN, MUHAMMAD;TAMARANY, RIZCKY;YOON, CHANG WON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.221-226
    • /
    • 2015
  • Ru catalysts supported on $CeO_2$ were synthesized by an impregnation method and characterized by numerous analytical techniques including X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). Upon utilization of these catalysts for methane dry reforming with a $CH_4/CO_2$ ratio of 1:1 at different temperatures ranging from 550 to $750^{\circ}C$, the $Ru/CeO_2$ catalysts have shown to be active. In particular, Ru(0.55wt%) supported on $CeO_2$ (1) prepared by a hydrothermal method exhibited excellent activity with the conversion of > 75% at $750^{\circ}C$. In addition, the catalyst also proved to be highly stable for at least 47 h without catalyst deactivation under the dry reforming conditions.

Recent Progress for Hydrogen Production from Biogas and Its Effective Applications (바이오가스 유래 수소 제조 기술 동향 및 효과적인 적용)

  • Song, Hyoungwoon;Jung, Hee Suk;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Hydrogen production from biogas has received consistent attention due to the great potential to solve simultaneously the issues of energy demands and environmental problems. Practically, biomethane produced by purification/upgrading of biogas can be a good alternative to the natural gas which is a main reactant for a steam methane reforming process. Judging from the economic and environmental impacts, however, the steam biogas and dry reforming are considered to be more effective routes for hydrogen production because both processes do not require the carbon dioxide elimination step. Herein, we highlight recent studies of hydrogen production via reforming processes using biogas and effective applications for earlier commercialization.

Effects of $CO_2$ and $O_2$ Addition on Methane Dry Reforming Using Arc-Jet Plasma Reactor (아크제트 플라즈마를 이용한 메탄건식개질 반응에서 $CO_2$$O_2$ 첨가의 영향)

  • Hwang, N.K.;Cha, M.S.;Song, Y.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.47-53
    • /
    • 2008
  • The reaction mechanism of methane dry reforming has been investigated using an arc-jet reactor. The effects of input power, $CO_2/CH_4$ and added $O_2$ were investigated by product analysis, including CO, $H_2$, $C_{2}H_{Y}$ and $C_{3}H_{Y}$ as well as $CH_4$ and $CO_2$. In the process, input electrical power activated the reactions between $CH_4$ and $CO_2$ significantly. The increased feed ratio of the $CO_2$ to $CH_4$ in the dry reforming does not affect to the $CH_4$ conversion. but we could observe increase in CO selectivity together with decreasing $H_2$ generation. Added oxygen can also increase not only CO selectivity but also $CH_4$ conversion. However, hydrogen selectivity was decreased significantly due to a increased $H_{2}O$ formation.

  • PDF

A Study on the Effects of pH and Ni/Mo Mole Ratio during Wet Impregnation on the Characteristics and Methane Dry Reforming Reactivity of Activated Charcoal Supported Ni-Mo Carbide Catalyst (습식담지시 pH와 Ni/Mo 몰비가 Ni-Mo/AC 카바이드 촉매의 특성과 메탄건식개질 반응성에 미치는 영향)

  • Lee, Dongmin;Hwang, Unyeon;Park, Hyungsang;Park, Sungyoul;Kim, Seongsoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.344-354
    • /
    • 2014
  • Activated charcoal supported nickel molybdenum carbide (carburized Ni-Mo/AC) catalysts were prepared by wet-impregnation followed by temperature-programmed carburization using 20% $CH_4/H_2$ gas. The effects of pH and initial Ni/Mo mole ratio during wet-impregnation step on the characteristics of the carburized Ni-Mo/AC catalysts were investigated using ICP, XRD, XPS, BET and $CO_2$-TPD techniques, and correlated with the catalytic activity of the carburized Ni-Mo/AC in methane dry reforming reaction. Comparison of the results of methane dry reforming reaction kinetics with the results of characterization of the carburized Ni-Mo/AC catalyst showed that the catalytic activity in methane dry reforming reaction was higher at higher initial Ni/Mo mole ratio or at lower pH(3~natural value). This phenomenon was related to the crystal size of metallic Ni in the carburized Ni-Mo/AC catalyst.