DOI QR코드

DOI QR Code

A Study on the Effects of pH and Ni/Mo Mole Ratio during Wet Impregnation on the Characteristics and Methane Dry Reforming Reactivity of Activated Charcoal Supported Ni-Mo Carbide Catalyst

습식담지시 pH와 Ni/Mo 몰비가 Ni-Mo/AC 카바이드 촉매의 특성과 메탄건식개질 반응성에 미치는 영향

  • Lee, Dongmin (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Hwang, Unyeon (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Park, Hyungsang (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Park, Sungyoul (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Kim, Seongsoo (Climate Change Research Division, Korea Institute of Energy Research)
  • 이동민 (서강대학교 화공생명공학과) ;
  • 황운연 (서강대학교 화공생명공학과) ;
  • 박형상 (서강대학교 화공생명공학과) ;
  • 박성열 (한국에너지기술연구원 기후변화연구본부) ;
  • 김성수 (한국에너지기술연구원 기후변화연구본부)
  • Received : 2014.06.14
  • Accepted : 2014.08.31
  • Published : 2014.08.30

Abstract

Activated charcoal supported nickel molybdenum carbide (carburized Ni-Mo/AC) catalysts were prepared by wet-impregnation followed by temperature-programmed carburization using 20% $CH_4/H_2$ gas. The effects of pH and initial Ni/Mo mole ratio during wet-impregnation step on the characteristics of the carburized Ni-Mo/AC catalysts were investigated using ICP, XRD, XPS, BET and $CO_2$-TPD techniques, and correlated with the catalytic activity of the carburized Ni-Mo/AC in methane dry reforming reaction. Comparison of the results of methane dry reforming reaction kinetics with the results of characterization of the carburized Ni-Mo/AC catalyst showed that the catalytic activity in methane dry reforming reaction was higher at higher initial Ni/Mo mole ratio or at lower pH(3~natural value). This phenomenon was related to the crystal size of metallic Ni in the carburized Ni-Mo/AC catalyst.

Keywords

References

  1. A. W. Budiman, S. H. Song, T. S. Chang, C. H. Shin and M. J. Choi "Dry reforming of methane over cobalt catalysts: A literature review of catalyst development", Catal. Surv. Asia, Vol. 16, 2012, pp. 183-197. https://doi.org/10.1007/s10563-012-9143-2
  2. Z. Cheng, Q. Wu, J. Li and Q. Zhu, "Effects of promoters and preparation procedures on reforming of methane with carbon dioxide over $Ni/Al_2O_3$ catalyst", Catal. Today, Vol. 30, 1996, pp. 147-155.
  3. S. Wang, G. Q. Lu and G. J. Millar, "Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art", Energy Fuels, Vol. 10, 1996, pp. 896-904. https://doi.org/10.1021/ef950227t
  4. Hye-Hyun Lee, Sang-Hoon Song, Tae-Sun Chang, Ji-Sook Hong, Jeong-Kwon Suh, Chang-Yong Lee, "The effect of Pt and La promoted on cobalt-based catalyst for $CO_2$ dry reforming", Appl. Chem. Eng., Vol. 22, No. 2, pp. 161-166.
  5. D. San-Jose-Alonso, J. Juan-Juan, M. J. Illan-Gomez and M. C. Roman-Martinez "Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane", Appl. Catal. A: Gen., Vol. 371, 2009, pp. 54-59. https://doi.org/10.1016/j.apcata.2009.09.026
  6. J. Cheng and W. Huang, "Effect of cobalt(nickel) content on the catalytic performance of molybdenum carbides in dry-methane reforming", Fuel Process. Technol., Vol. 91, 2010, pp. 185-193. https://doi.org/10.1016/j.fuproc.2009.09.011
  7. J. Sehested, C. J. H. Jacobsen, S. Rokni and J. R. Rostrup-Nielsen, "Activity and stability of molybdenum carbide as a catalyst for $CO_2$ reforming", J. Catal., Vol. 201, 2001, pp. 206-212. https://doi.org/10.1006/jcat.2001.3255
  8. D. C. Lamont and W. J. Thomson, "The influence of mass transfer conditions on the stability of molybdenum carbide for dry methane reforming", Appl. Catal. A: Gen., Vol. 274, 2004, pp. 173-178. https://doi.org/10.1016/j.apcata.2004.06.043
  9. C. Shi, A. Zhang, X. Li, S. Zhang, A. Zhu, Y. Ma and C. Au, "Ni-modified $Mo_2C$ catalysts for methane dry reforming", Appl. Catal. A: Gen., Vol. 431-432, 2012, pp. 164-170. https://doi.org/10.1016/j.apcata.2012.04.035
  10. A. Zhang, A. Zhu, B. Chen, S. Zhang, C. Au and C. Shi, "In-situ synthesis of nickel modified molybdenum carbide catalyst for dry reforming of methane", Catal. Commun., Vol. 12, 2011, pp. 803-807. https://doi.org/10.1016/j.catcom.2011.01.019
  11. T. Hirose, Y. Ozawa and M. Nagai, "Preparation of a nickel molybdenum carbide catalyst and its activity in the dry reforming of methane", Chin. J. Chem., Vol. 32, Issue. 5, 2011, pp. 771-776.
  12. M. de Boer, R. G. Leliveld, A. J. van Dillen, J. W. Geus and H. G. Bruil, "Application of acoustophoresis in a study on solute-support interactions for the preparation of supported cobalt-molybdenum catalysts", Appl. Catal. A: Gen., Vol. 102, 1993, pp. 35-51. https://doi.org/10.1016/0926-860X(93)85153-G
  13. Dong-Min Lee, The Effects of pH and Ni/Mo Mole Ratio during Wet-impregnation on the Characteristics and Catalytic Activity of the Carburized Ni-Mo/AC in Methane Dry Reforming Reaction, MS Thesis, Sogang University, 2014.
  14. J. A. Bergwerff, T. Visser and B. M. Weckhuysen, "On the interaction between Co- and Mo-complexes in impregnation solutions used for the preparation of $Al_2O_3$-supported HDS catalysts: A combined Raman/UV-vis-NIR spectroscopy study", Catal. Today., Vol. 130, 2008, pp. 117-125. https://doi.org/10.1016/j.cattod.2007.06.037
  15. M. Dai, "The effect of zeta potential of activated carbon on the adsorption of dyes from aqueous solution. I. The adsorption of cationic dyes: Methyl Green and Methyl Violet", J. Colloid Inter face Sci., Vol.164, 1994, pp. 223-228. https://doi.org/10.1006/jcis.1994.1160
  16. A. I. Demidov and E. N. Volkova, "Potential-pH diagram for the nickel-water system containing nickel(III) metahydroxide", Russ. J. Appl. Chem., Vol. 82, No. 8, 2009, pp. 1498-1500. https://doi.org/10.1134/S1070427209080333
  17. A. G. Tyruin and N. V. Markina, "Diagrams of chemical and electrochemical equilibriums of nickelmolybdenum and nickel-chromium- molybdenum alloys", Prot. Met. Phys. Chem. Surf., Vol. 45, No. 3, 2009, pp. 361-368. https://doi.org/10.1134/S2070205109030149
  18. C. Liang, W. Ma, Z. Feng and C. Li, "Activated carbon supported bimetallic CoMo carbides synthesized by carbothermal hydrogen reduction", Carbon, Vol. 41, 2003, pp. 1833-1839. https://doi.org/10.1016/S0008-6223(03)00169-6
  19. J. G. Choi and L. T. Thompson, "XPS study of as-prepared and reduced molybdenum oxides", Appl. Surf. Sci., Vol. 93, 1996, pp. 143-149. https://doi.org/10.1016/0169-4332(95)00317-7
  20. C. Li, Y. Fu, G. Bian, T. Hu, Y. Xie and J. Zhan, "$CO_2$ Reforming of $CH_4$ over Ni/$CeO_2-ZrO_2-Al_2O_3$ Prepared by Hydrothermal Synthesis Method", J. Natural Gas Chem., Vol. 12, 2003, pp. 167-177.
  21. J. H. Kim, D. J. Suh, T. J. Park and K. L. Kim, "Effect of metal particle size on coking during $CO_2$ reforming of $CH_4$ over Ni-alumina aerogel catalysts", Appl. Catal. A: Gen., Vol. 197, 2000, pp. 191-200. https://doi.org/10.1016/S0926-860X(99)00487-1
  22. M. A. Naeem, A. S. Al-Fatesh, W. U. Khan, A. E. Abasaeed and A. H. Fakeeha, "Syngas production from dry reforming of methane over nano Ni polyol catalysts", IJCEA, Vol. 4, No. 5, 2013, pp. 315-320.