Recycle of Carbon Dioxide Using Dry Reforming of Methane

메탄의 건식 개질을 이용한 이산화탄소의 재활용

  • 김정묵 (포항공과대학교 화학공학과) ;
  • 류준형 (포항공과대학교 화학공학과) ;
  • 이인범 (포항공과대학교 화학공학과) ;
  • 이재성 (포항공과대학교 화학공학과)
  • Received : 2009.04.03
  • Accepted : 2009.04.18
  • Published : 2009.06.30

Abstract

Considerable attention has been given to developing methodologies to reduce the emission of carbon dioxide from industry to meet strengthened environmental regulations. In this article, recent research trends on dry reforming of methane as an alternative method to reduce $CO_2$ emission from large scale industrial processes are addressed. To efficiently provide the energy needed in this strong endothermic reaction without additional $CO_2$ emission, it seems to be desirable to adopt autothermal reaction mode. The produced synthesis gas could be used as a reducing gas, or a feedstock for synthesis of chemicals and fuels.

온실가스 배출 규제에 따라 이산화탄소 배출 감축은 산업계에서 해결해야 할 가장 중요한 과제 중 하나가 되었다. 이산화탄소는 온실가스 발생원 중 대부분을 차지하며 본 논문에서는 실제 대규모 산업 현장에서의 이산화탄소 배출을 저감하는 직접적인 방안으로 메탄의 이산화탄소 개질 반응을 이용하는 방법을 고찰해 보았다. 강한 흡열 반응 형태인 이 반응에 대해 추가적인 이산화탄소 발생을 피하며 효율적으로 에너지를 공급하기 위해서는 자열 개질 반응을 이용하는 것이 적합한 방법으로 판단된다. 생산된 합성가스는 환원가스로 재활용하거나 화학제품 및 연료의 합성에 활용할 수 있다.

Keywords

References

  1. Kwon, T. H. and Choi, J. Y., "Analysis on Recent Green House Gas Emission in Korea, Bank of Korea, Seoul, Korea(2008)
  2. IPCC, "IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]," Cambridge, United Kingdom and New York, NY, USA, p. 442(2005)
  3. Song, C., "Global Challenges and Strategies for Control, Conversion and Utilization of $CO_2$ for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing", Catalysis Today, 115(1-4), 2(2006) https://doi.org/10.1016/j.cattod.2006.02.029
  4. Hu, Y. H. and Ruckenstein, E., "Binary MgO-Based Solid Solution Catalysts for Methane Conversion to Syngas", Catalysis Reviews, 44(3), 423(2002) https://doi.org/10.1081/CR-120005742
  5. Bradford, M. C. J. and Vannice, M. A., '$CO_2$ Reforming of $CH_4$,' Catalysis Reviews, 41(1), 1(1999)
  6. Hu, Y. H., Ruckenstein, E., Bruce, C. G. and Helmut, K., "Catalytic Conversion of Methane to Synthesis Gas by Partial Oxidation and $CO_2$ Reforming", Advances in Catalysis, Academic Press, 297-345(2004)
  7. Choudhary, T. V. and Choudhary, V. R., "Energy-Efficient Syngas Production through Catalytic Oxy-Methane Reforming Reactions," Angewandte Chemie International Edition, 47(10), 1828(2008) https://doi.org/10.1002/anie.200701237
  8. Yagi, F., Kanai, R., Wakamatsu, S., Kajiyama, R., Suehiro, Y. and Shimura, M., "Development of Synthesis Gas Production Catalyst and Process", Catalysis Today, 104(1), 2(2005) https://doi.org/10.1016/j.cattod.2005.03.061
  9. Pena, M. A., Gomez, J. P. and Fierro, J. L. G., "New Catalytic Routes for Syngas and Hydrogen Production", Applied Catalysis A: General., 144(1-2), 7(1996) https://doi.org/10.1016/0926-860X(96)00108-1
  10. http://www.ulcos.org/en/
  11. Moon, K.-I., "Carbon Dioxide Reforming of Methane over Nickelbased Catalyst", Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 111(1996)
  12. http://www.gms21.com
  13. Chubb, T. A., "Characteristics of $CO_2-CH_4$ Reforming-Methanation Cycle Relevant to the Solchem Thermochemical Power System," Solar Energy., 24(4), 341(1980) https://doi.org/10.1016/0038-092X(80)90295-9
  14. Rostrup-Nielsen, J. and Trimm, D. L., "Mechanisms of Carbon Formation on Nickel-containing Catalysts", Journal of Catalysis, 48(1-3), 155(1977) https://doi.org/10.1016/0021-9517(77)90087-2
  15. Hu, Y. H. and Ruckenstein, E., "The Characterization of a Highly Effective NiO/MgO Solid Solution Catalyst in the $CO_2$ Reforming of $CH_4$," Catalysis Letters, 43(1), 71(1997) https://doi.org/10.1023/A:1018982304573
  16. Snoeck, J. W., Froment, G. F. and Fowles, M., "Filamentous Carbon Formation and Gasification: Thermodynamics, Driving Force, Nucleation, and Steady-State Growth", Journal of Catalysis, 169(1), 240(1997) https://doi.org/10.1006/jcat.1997.1634
  17. Ruckenstein, E. and Wang, H. Y., "Carbon Deposition and Catalytic Deactivation during $CO_2$ Reforming of $CH_4$ over $Co/\gamma-Al_2O_3$ Catalysts," Journal of Catalysis., 205(2), 289(2002) https://doi.org/10.1006/jcat.2001.3458
  18. Bychkov, V. Y., Tyulenin, Y. P. and Korchak, V. N., "The Mechanism of Methane Reforming with Carbon Dioxide: Comparison of Supported Pt and Ni (Co) Catalysts," Kinetics and Catalysis, 44(3), 353(2003) https://doi.org/10.1023/A:1024494918755
  19. Sierra Gallego, G., Mondrag, F., Tatibou, J.-M., Barrault, J. and Batiot-Dupeyrat, C., 'Carbon Dioxide Reforming of Methane over $La_2NiO_4$ as Catalyst Precursor-Characterization of Carbon Deposition,' Catalysis Today, 133-135, 200(2008)
  20. Assabumrungrat, S., Laosiripojana, N. and Piroonlerkgul, P., "Determination of The Boundary of Carbon Formation for Dry Reforming of Methane in a Solid Oxide Fuel Cell", Journal of Power Sources., 159(2), 1274(2006) https://doi.org/10.1016/j.jpowsour.2005.12.010
  21. Gadalla, A. M. and Bower, B., "The Role of Catalyst Support on the Activity of Nickel for Reforming Methane with $CO_2$," Chemical Engineering Science., 43(11), 3049(1988) https://doi.org/10.1016/0009-2509(88)80058-7
  22. Rostrup-Nielsen, J. R., "Sulfur-passivated Nickel Catalysts for Carbon-free Steam Reforming of Methane,"Journal of Catalysis., 85(1), 31(1984) https://doi.org/10.1016/0021-9517(84)90107-6
  23. Rostrup-Nielsen, J. R., Calvin, H. B. and John, B. B., 'Promotion by Poisoning,' Studies in Surface Science and Catalysis, Elsevier, 85-101(1991)
  24. Duprez, D., DeMicheli, M. C., Marecot, P., Barbier, J., Ferretti, O. A. and Ponzi, E. N., "Deactivation of Steam-Reforming Model Catalysts by Coke Formation : I. Kinetics of the Formation of Filamentous Carbon in the Hydrogenolysis of cyclopentane on $Ni/Al_2O_3$ Catalysts," Journal of Catalysis., 124(2), 324(1990) https://doi.org/10.1016/0021-9517(90)90181-I
  25. Li, L., Liu, B. S., Leung, J. W. H., Au, C. T. and Cheung, A. S. C., $CH_4/CO_2$ Reforming over $La_2NiO_4$ and 10%$NiO/CeO_2-La_2O_3$ Catalysts under the Condition of Supersonic Jet Expansion via Cavity Ring-down Spectroscopic Analysis" Catalysis Today, 131(1-4), 533(2008) https://doi.org/10.1016/j.cattod.2007.10.087
  26. Laosiripojana, N., Chadwick, D. and Assabumrungrat, S., "Effect of High Surface Area $CeO_2$ and $Ce-ZrO_2$ Supports over Ni Catalyst on $CH_4$ Reforming with $H_2O$ in the Presence of $O_2$, $H_2$, and $CO_2$," Chemical Engineering Journal., 138(1-3), 264(2008) https://doi.org/10.1016/j.cej.2007.05.035
  27. Lima, S. M., Assaf, J. M., Pe, M. A. and Fierro, J. L. G., "Structural Features of $La_{1-x}Ce_xNiO_3$ Mixed Oxides and Performance for the Dry Reforming of Methane," Applied Catalysis A: General, 311, 94(2006) https://doi.org/10.1016/j.apcata.2006.06.010
  28. Choudhary, V. R., Mondal, K. C. and Mamman, A. S., "High-Temperature Stable and Highly Active/selective Supported $NiCoMg-CeO_x$ Catalyst Suitable for Autothermal Reforming of Methane to Syngas," Journal of Catalysis, 233(1), 36(2005) https://doi.org/10.1016/j.jcat.2005.04.019
  29. Fei, J., Hou, Z., Zheng, X. and Yashima, T., "Doped Ni Catalysts for Methane Reforming with $CO_2$," Catalysis Letters, 98(4), 241 (2004) https://doi.org/10.1007/s10562-004-8687-9
  30. Bouarab, R., Akdim, O., Auroux, A., Cherifi, O. and Mirodatos, C., "Effect of MgO Additive on Catalytic Properties of $Co/SiO_2$ in the Dry Reforming of Methane," Applied Catalysis A: General, 264(2), 161(2004) https://doi.org/10.1016/j.apcata.2003.12.039
  31. Mattos, L. V., Rodino, E., Resasco, D. E., Passos, F. B. and Noronha, F. B., "Partial Oxidation and $CO_2$ Reforming of Methane on $Pt/Al_2O_3$, $Pt/ZrO_2$, and $Pt/Ce-ZrO_2$ Catalysts," Fuel Processing Technology., 83(1-3), 147(2003) https://doi.org/10.1016/S0378-3820(03)00063-8
  32. Seok, S.-H., Choi, S. H., Park, E. D., Han, S. H. and Lee, J. S., "Mn-Promoted $Ni/Al_2O_3$ Catalysts for Stable Carbon Dioxide Reforming of Methane," Journal of Catalysis, 209(1), 6(2002) https://doi.org/10.1006/jcat.2002.3627
  33. Souza, M. M. V. M., Aranda, D. A. G. and Schmal, M., "Reforming of Methane with Carbon Dioxide over $Pt/ZrO_2/Al_2O_3$ Catalysts," Journal of Catalysis, 204(2), 498(2001) https://doi.org/10.1006/jcat.2001.3398
  34. Xu, Z., Zhen, M., Bi, Y. and Zhen, K., "Catalytic Properties of Ni Modified Hexaaluminates $LaNi_yAl_{12-y}O_{19-\delta}$ for $CO_2$ Reforming of Methane to Synthesis Gas," Applied Catalysis A: General, 198(1-2), 267(2000) https://doi.org/10.1016/S0926-860X(99)00518-9
  35. Seok, S.-H., "Role of Mn-oxide in $Ni/MnO_x-Al_2O_3$ Catalysts for Carbon Dioxide Reforming of Methane, " Department of chemical engineering, Pohang University of Science and Technology, Pohang, 133(2000)
  36. Kaengsilalai, A., Luengnaruemitchai, A., Jitkarnka, S. and Wongkasemjit, S., "Potential of Ni Supported on KH Zeolite Catalysts for Carbon Dioxide Reforming of Methane," Journal of Power Sources, 165(1), 347(2007) https://doi.org/10.1016/j.jpowsour.2006.12.005
  37. Ruckenstein, E. and Hu, Y. H., "Carbon Dioxide Reforming of Methane over Nickel/Alkaline Earth Metal Oxide Catalysts," Applied Catalysis A: General, 133(1), 149(1995) https://doi.org/10.1016/0926-860X(95)00201-4
  38. Ruckenstein, E. and Hang Hu, Y., "The Effect of Precursor and Preparation Conditions of MgO on the $CO_2$ Reforming of $CH_4$ over NiO/MgO Catalysts," Applied Catalysis A: General, 154(1-2), 185 (1997) https://doi.org/10.1016/S0926-860X(96)00372-9
  39. Tomishige, K., Yamazaki, O., Chen, Y., Yokoyama, K., Li, X. and Fujimoto, K., "Development of Ultra-stable Ni Catalysts for $CO_2$ Reforming of Methane," Catalysis Today, 45(1-4), 35(1998) https://doi.org/10.1016/S0920-5861(98)00238-7
  40. Valderrama, G., Kiennemann, A. and Goldwasser, M. R., "Dry Reforming of $CH_4$ over Solid Solutions of $LaNi_{1-x}Co_xO_3$," Catalysis Today, 133-135, 142(2008) https://doi.org/10.1016/j.cattod.2007.12.069
  41. Araujo, G. C. d., Lima, S. M. d., Assaf, J. M., Pe, M. A., Fierro, J. L. G. and do Carmo Rangel, M., "Catalytic Evaluation of Perovskite-type Oxide $LaNi_{1-x}Ru_xO_3$ in Methane Dry Reforming," Catalysis Today, 133-135, 129(2008) https://doi.org/10.1016/j.cattod.2007.12.049
  42. Gallego, G. S., Mondrag, F., Barrault, J., Tatibou, J.-M. and Batiot-Dupeyrat, C., "$CO_2$ Reforming of $CH_4$ over La-Ni Based Perovskite Precursors," Applied Catalysis A: General 311, 164(2006) https://doi.org/10.1016/j.apcata.2006.06.024
  43. Batiot-Dupeyrat, C., Gallego, G. A. S., Mondragon, F., Barrault, J. and Tatibou, J.-M., "$CO_2$ Reforming of Methane over $LaNiO_3$ as Precursor Material," Catalysis Today, 107-108, 474(2005) https://doi.org/10.1016/j.cattod.2005.07.014
  44. Guo, J., Lou, H., Zhu, Y. and Zheng, X., "La-based Perovskite Precursors Preparation and Its Catalytic Activity for $CO_2$ Reforming of $CH_4$," Materials Letters, 57(28), 4450(2003) https://doi.org/10.1016/S0167-577X(03)00341-0
  45. Hayakawa, T., Suzuki, S., Nakamura, J., Uchijima, T., Hamakawa, S., Suzuki, K., Shishido, T. and Takehira, K., "$CO_2$ Reforming of $CH_4$ over Ni/Perovskite Catalysts Prepared by Solid Phase Crystallization Method," Applied Catalysis A: General, 183(2), 273(1999) https://doi.org/10.1016/S0926-860X(99)00071-X
  46. Tomishige, K., Nurunnabi, M., Maruyama, K. and Kunimori, K., "Effect of Oxygen Addition to Steam and Dry Reforming of Methane on Bed Temperature Profile over Pt and Ni Catalysts," Fuel Processing Technology, 85(8-10), 1103(2004) https://doi.org/10.1016/j.fuproc.2003.10.014
  47. Hou, Z., Gao, J., Guo, J., Liang, D., Lou, H. and Zheng, X., "Deactivation of Ni Catalysts during Methane Autothermal Reforming with $CO_2$ and $O_2$ in a Fluidized-Bed Reactor," Journal of Catalysis, 250(2), 331(2007) https://doi.org/10.1016/j.jcat.2007.06.023
  48. Souza, M. M. V. M. and Schmal, M., "Autothermal Reforming of Methane over $Pt/ZrO_2/Al_2O_3$ Catalysts," Applied Catalysis A: General, 281(1-2), 19(2005) https://doi.org/10.1016/j.apcata.2004.11.007
  49. Amin, N. A. S. and Yaw, T. C., "Thermodynamic Equilibrium Analysis of Combined Carbon Dioxide Reforming with Partial Oxidation of Methane to Syngas," International Journal of Hydrogen Energy, 32(12), 1789(2007) https://doi.org/10.1016/j.ijhydene.2006.12.004
  50. Liu, S., Xiong, G., Dong, H. and Yang, W., "Effect of Carbon Dioxide on the Reaction Performance of Partial Oxidation of Methane over a $LiLaNiO/\gamma-Al_2O_3$ Catalyst," Applied Catalysis A: General, 202(1), 141(2000) https://doi.org/10.1016/S0926-860X(00)00460-9
  51. Tomishige, K., Kanazawa, S., Suzuki, K., Asadullah, M., Sato, M., Ikushima, K. and Kunimori, K., "Effective Heat Supply from Combustion to Reforming in Methane Reforming with $CO_2$ and $O_2$: Comparison between Ni and Pt Catalysts," Applied Catalysis A: General, 233(1-2), 35(2002) https://doi.org/10.1016/S0926-860X(02)00131-X
  52. Choudhary, V. R., Mondal, K. C. and Choudhary, T. V., "Oxy-$CO_2$ Reforming of Methane to Syngas over $CoO_x/MgO/SA-5205$ Catalyst," Fuel, 85(17-18), 2484(2006) https://doi.org/10.1016/j.fuel.2006.04.013
  53. Choudhary, V. R., Mondal, K. C. and Choudhary, T. V., "Oxy-$CO_2$ Reforming of Methane to Syngas over <$CoO_x/CeO_2/SA-5205$ Catalyst," Energy & Fuels, 20(5), 1753(2006) https://doi.org/10.1021/ef060138o
  54. Wang, W., Stagg-Williams, S. M., Noronha, F. B., Mattos, L. V. and Passos, F. B., "Partial Oxidation and Combined Reforming of Methane on Ce-promoted Catalysts," Catalysis Today, 98(4), 553(2004) https://doi.org/10.1016/j.cattod.2004.09.009
  55. Tomishige, K., Matsuo, Y., Yoshinaga, Y., Sekine, Y., Asadullah, M. and Fujimoto, K., "Comparative Study Between Fluidized Bed and Fixed Bed Reactors in Methane Reforming Combined with Methane Combustion for the Internal Heat Supply under Pressurized Condition," Applied Catalysis A: General, 223(1-2), 225(2002) https://doi.org/10.1016/S0926-860X(01)00757-8
  56. O’onnor, A. M. and Ross, J. R. H., "The Effect of $O_2$ Addition on the Carbon Dioxide Reforming of Methane over $Pt/ZrO_2$ Catalysts," Catalysis Today, 46(2-3), 203(1998) https://doi.org/10.1016/S0920-5861(98)00342-3
  57. Mo, L., Zheng, X., Chen, Y. and Fei, J., "Combination of $CO_2$ Reforming and Partial Oxidation of $CH_4$ over $Ni/Al_2O_3$ Catalysts Using Fluidized Bed Reactor," Reaction Kinetics and Catalysis Letters, 78(2), 233(2003) https://doi.org/10.1023/A:1022617407238
  58. Mo, L., Fei, J., Huang, C. and Zheng, X., "Reforming of Methane with Oxygen and Carbon Dioxide to Produce Syngas over a Novel $Pt/CoAl_2O_4/Al_2O_3$ Catalyst," Journal of Molecular Catalysis A: Chemical, 193(1-2), 177(2003) https://doi.org/10.1016/S1381-1169(02)00453-3
  59. Jing, Q., Lou, H., Mo, L., Fei, J. and Zheng, X., "Reforming of $CH_4$ with $CO_2$ and $O_2$ to Produce Syngas over CaO Modified $Ni/SiO_2$ Catalysts in a Fluidized Bed Reactor," Reaction Kinetics and Catalysis Letters, 83(2), 291(2004) https://doi.org/10.1023/B:REAC.0000046089.46624.1b
  60. Guo, J., Lou, H., Zhao, H., Chai, D. and Zheng, X., "Dry Reforming of Methane over Nickel Catalysts Supported on Magnesium Aluminate Spinels," Applied Catalysis A: General, 273(1-2), 75(2004) https://doi.org/10.1016/j.apcata.2004.06.014
  61. Gao, J., Guo, J., Liang, D., Hou, Z., Fei, J. and Zheng, X., "Production of Syngas via Autothermal Reforming of Methane in a Fluidized-Bed Reactor over the Combined $CeO_2-ZrO_2/SiO_2$ Supported Ni Catalysts," International Journal of Hydrogen Energy, 33(20), 5493(2008) https://doi.org/10.1016/j.ijhydene.2008.07.040
  62. Matsuo, Y., Yoshinaga, Y., Sekine, Y., Tomishige, K. and Fujimoto, K., "Autothermal $CO_2$ Reforming of Methane over NiO-MgO Solid Solution Catalysts under Pressurized Condition: Effect of Fluidized Bed Reactor and Its Promoting Mechanism," Catalysis Today, 63(2-4), 439(2000) https://doi.org/10.1016/S0920-5861(00)00489-2
  63. Kunii, D. and Levenspiel, O., Fluidization Engineering, Wiley, New York(1969)
  64. Santos, A., Menendez, M., Monz, A., Santamaria, J., Miro, E. E. and Lombardo, E. A., "Oxidation of Methane to Synthesis Gas in a Fluidized Bed Reactor Using MgO-Based Catalysts," Journal of Catalysis, 158(1), 83(1996) https://doi.org/10.1006/jcat.1996.0008
  65. Effendi, A., Hellgardt, K., Zhang, Z. G. and Yoshida, T., "Characterisation of Carbon Deposits on Ni/SiO2 in the Reforming of $CH_4-CO_2$ Using Fixed- and Fluidised-Bed Reactors," Catalysis Communications, 4(4), 203(2003) https://doi.org/10.1016/S1566-7367(03)00034-7
  66. Chen, X., Honda, K. and Zhang, Z.-G., "A Comprehensive Comparison of $CH_4-CO_2$ Reforming Activities of $NiO/Al_2O_3$ Catalysts under Fixed-and Fluidized-Bed Operations," Applied Catalysis A: General, 288(1-2), 86(2005) https://doi.org/10.1016/j.apcata.2005.04.037
  67. Choudhary, V. R., Rajput, A. M. and Prabhakar, B., "Energy Efficient Methane-to-Syngas Conversion with Low $H_2/CO$ Ratio by Simultaneous Catalytic Reactions of Methane with Carbon Dioxide and Oxygen," Catalysis Letters, 32(3), 391(1995) https://doi.org/10.1007/BF00813234
  68. Choudhary, V. R., Uphade, B. S. and Mamman, A. S., "Simultaneous Steam and $CO_2$ Reforming of Methane to Syngas over NiO/MgO/SA-5205 in Presence and Absence of Oxygen," Applied Catalysis A: General, 168(1), 33(1998) https://doi.org/10.1016/S0926-860X(97)00331-1
  69. Ruckenstein, E. and Hu, Y. H., "Combination of $CO_2$ Reforming and Partial Oxidation of Methane over NiO/MgO Solid Solution Catalysts," Industrial & Engineering Chemistry Research, 37(5), 1744(1998) https://doi.org/10.1021/ie9707883
  70. Song, C. and Pan, W., "Tri-reforming of Methane: A Novel Concept for Catalytic Production of Industrially Useful Synthesis Gas with Desired $H_2/CO$ Ratios," Catalysis Today, 98(4), 463(2004) https://doi.org/10.1016/j.cattod.2004.09.054
  71. Choudhary, V. R., Mondal, K. C. and Choudhary, T. V., "Partial Oxidation of Methane to Syngas with or without Simultaneous Steam or $CO_2$ Reforming over a High-Temperature Stable-$NiCoMg-CeO_x$ Supported on Zirconia-Hafnia Catalyst," Applied Catalysis A: General, 306, 45(2006) https://doi.org/10.1016/j.apcata.2006.03.032
  72. Larentis, A. L., de Resende, N. S., Salim, V. M. M. and Pinto, J. C., "Modeling and Optimization of the Combined Carbon Dioxide Reforming and Partial Oxidation of Natural Gas," Applied Catalysis A: General, 215(1-2), 211(2001) https://doi.org/10.1016/S0926-860X(01)00504-X
  73. Souza, M. M. V. M., Macedo Neto, O. I. R. and Schmal, M., "Synthesis Gas Production from Natural Gas on Supported Pt Catalysts," Journal of Natural Gas Chemistry, 15(1), 21(2006) https://doi.org/10.1016/S1003-9953(06)60003-0
  74. Choudhary, V. R. and Mamman, A. S., "Simultaneous Oxidative Conversion and $CO_2$ or Steam Reforming of Methane to Syngas over CoO-NiO-MgO Catalyst," Journal of Chemical Technology & Biotechnology, 73(4), 345(1998) https://doi.org/10.1002/(SICI)1097-4660(199812)73:4<345::AID-JCTB961>3.0.CO;2-#
  75. Ruckenstein, E. and Wang, H. Y., "Combined Catalytic Partial Oxidation and $CO_2$ Reforming of Methane over Supported Cobalt Catalysts," Catalysis Letters, 73(2), 99(2001) https://doi.org/10.1023/A:1016695830055
  76. Ashcroft, A. T., Cheetham, A. K., Green, M. L. H. and Vernon, P. D. F., "Partial Oxidation of Methane to Synthesis Gas Using Carbon Dioxide," Nature, 352(6332), 225(1991) https://doi.org/10.1038/352225a0
  77. Pant, B. and Stagg-Williams, S. M., "Investigation of the Stability of $Pt/LaCoO_3$ during High Temperature Reforming Reactions," Catalysis Communications, 5(6), 305(2004) https://doi.org/10.1016/j.catcom.2004.03.009