• Title/Summary/Keyword: 매립석탄재

Search Result 13, Processing Time 0.027 seconds

Assessment of Controlled Low Strength Material using Pond Ash for Pipe Backfill Materials (매립석탄재 활용 CLSM의 관 뒤채움재 적용성 평가)

  • Young-Wook Kim;Young-Cheol Lim;Doo-Bong Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.32-38
    • /
    • 2023
  • In this study, as part of the practical development of technology for CLSM using pond ash, the characteristics such as flowability, bleeding rate, and strength of the CLSM according to physical properties such as particle size distribution and particulate content of the pond ash were reviewed. As a result of analyzing the properties of the collected pond ash, it was found that the characteristics of density and particle size distribution were different. As a result of evaluating the characteristics of the CLSM for three types of pond ash, it was found that the blending conditions to satisfy the quality stipulated in ACI 229R were different, and mainly affected the particle size distribution characteristics and particulate content of the pond ash. In case of coarse-grained pond ash (PA-3), mixing conditions that satisfy the performance requirements stipulated in ACI 229R were not derived. But it is considered that further review is necessary according to particle size adjustment.

Feasibility Study on CLSM for Emergency Recovery of Landfill Bottom Ash (매립장 석탄회의 긴급복구용 CLSM으로 활용 가능성)

  • Ha-Seog Kim;Ki-Suk Kim
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.137-145
    • /
    • 2023
  • In this study, the characteristics such as flowability, bleeding rate, and strength of the CLSM (Controlled Low Strength Material) according to physical properties such as particle size distribution and particulate content of the pond ash were investigated as part of the practical development of technology for CLSM using pond ash. As a result of analyzing the properties of the collected pond ash, it was found that the density and particle size distribution characteristics were different. And that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for four hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it was determined that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.

Grinding Effects of Coal-Fired Pond Ash on Compressive Strength of Geopolymers (화력발전소 매립 석탄재의 분쇄가 지오폴리머의 강도에 미치는 영향)

  • Lee, Sujeong;Kang, Nam-Hee;Chon, Chul-Min;Jou, Hyeong-Tae
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.3-11
    • /
    • 2014
  • Bottom ash from coal fired power plants is not widely used due to a broad range of particle sizes and a high carbon content for producing geopolymers. The effect of mechanical activation on compressive strength of bottom ash- based geopolymers was examined by rod and planetary-ball milling to encourage full-fledged recycling of bottom ash, the main component of pond ash. The amount of amorphous component in the milled ash samples did not change significantly after the mechanical activation. It is presumably because needle-shaped mullite crystals, which is a major crystalline phase and grown in a glassy matrix, possess high strength and toughness, and therefore, they could endure external shocks and remain almost intact. Milling operation, however, decreased the particle size and improved the homogeneity of ash, thereby leading to increase reactivity of milled ash with alkali activators. Rod milling produced a relatively narrow particle size distribution of the milled ash particles; however, it was less effective in reducing the particle size. Nevertheless, it was interesting to observe that rod milling had equal effect on improving the compressive strength of geopolymers up to about 37%, as that of planetary ball milling. Rod milling is believed to be suitable process for enhancing the reactivity of bottom ash for large-scale recycling of bottom ash and producing geopolymers.

Studies on Expanding Application for the Recycling of Coal Ash in Domestic (국내 석탄재 재활용 확대 방안 연구)

  • Cho, Hanna;Maeng, Jun-Ho;Kim, Eun-young
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.563-573
    • /
    • 2017
  • Coal ash is generated from coal-fired thermal power plants every year. The remaining quantity of coal ash ends up in the landfills except for the recycled portion, and the existing ash pond capacity is limited almost. Currently, the difficulties are faced in building a new ash treatment plant because of the concerns about the environmental impacts of landfills at individual plant facilities. In terms of minimizing the environmental impact, the recycling and effective uses of coal ash are recognized as urgent issues to be challenged. Accordingly, this study examines the obstacles in expanding the recycling of the coal ash in South Korea and proposes solutions based on the case study analysis. The analysis results are as follows: 1) specific recycling guidelines and standards are required to be established in accordance with the contact medium (soil, ground water, surface water and sea water) and the chemical. 2) by providing the recognition environmentally safe in recycling the coal ash, transparency in establishing the planning stages and active communication with the community through promotion and research are essentially needed. 3) practical support system is required to encourage the power plant companies to use the coal ash as beneficial use.

An Experimental Study on the Mechanical Properties of Porous Concrete Using Coal Ash and Polymer (석탄재 및 고분자화합물을 이용한 포러스콘크리트의 역학적 특성에 관한 실험적 연구)

  • Lee, Byung-Jae;Park, Seong-Bum;Lee, Jun;Jang, Young-Il;Cho, Kwang-Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.901-904
    • /
    • 2008
  • Immense quantities of coal combustion by-products are produced every year, and only a small fraction of them are currently utilized. Therefore, this study investigated and analyzed the applications of porous concrete for the efficient utilization of bottom ash. This study examines on application of polymer to improve strength properties of porous concrete using coal-ash. As the results, when the mixing ratio of bottom ash increases, void ratio and coefficient of permeability of porous concrete increases, but its strength decreases. Also, as the mixing ratio of polymer increases, its void ratio and coefficient of permeability decreases. When specific amount of polymer is mixed, we can find its strength properties are improved.

  • PDF

A Study on Changes in Heavy Metal Contents in Concrete Prepared Using Coal Ashes (석탄재의 콘크리트 활용에 따른 중금속 함량변화 연구)

  • Lee, Jinwon;Choi, Seung-Hyun;Kim, Kangjoo;Kim, Seok-Hwi;Moon, Bo-Kyung
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.371-379
    • /
    • 2018
  • In many countries, recycling coal ashes as backfill materials for subsided lands, abandoned mine tunnels, and road pipeline constructions by making low-strength concretes with minimal amounts of cement is frequently considered for massive treatment of coal ashes. This study investigates the variation of heavy metals in the concrete test pieces prepared for the cases of using only Portland cement as binding material, fly ash as a replacement of the cement, sand as aggregates, and disposed ashes in the ash ponds as a replacement of aggregates. Heavy metal contents were measured based on the aqua regia extraction technique following the Korean Standard for Fair Testing of Soil Contamination and the influences of each materials on the total heavy metal contents were also assessed. Results show that the cement has the highest Cu, Pb, and Zn concentrations than any other materials. Therefore, the test pieces show significant concentration decreases for those metals when the cement was replaced by fly ash. Ponded ash shows low concentrations relative to fly ash in most of the parameters but shows higher Cu and Ni, and lower Pb levels than the sand aggregate. In overall, heavy metal levels of the test pieces are regulated by mixing among the used materials. Test pieces prepared during this study always show concentrations much lower than the Worrisome Level of Soil Contamination (Area 1), which was designated by the Soil Environment Conservation Act of Korea.

A Study on the Utilization of Coal Ash as Construction Materials ln Forcus on the Environmental Analysis (석탄재의 건설재료로서의 활용에 관한 연구-환경적 특성 검토를 중심으로)

  • 천병식;고용일
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.99-106
    • /
    • 1995
  • Although lots of experimental studies of coal ash have been performed to study the utilization as construction materials, the environmental characteristics of coal ash are still qestionable. In this study, fly ash is examined to be classified according to Korean Environmental Standard and analized whether the batch test results are within the toler trance limit when utilized or treated as reclamation and earth work materials. The batch tests was performed to examine pH and contaminant contents. Consequently, fly ash is classified as non hazardous industrial waste. The pH value shows a strong alkalinity than the tolerance limit, but it is implied that fly ash can be used to neutralize the acid ground. All other items except pH satisfy the tolerance limit, In addition, a small quantity of additives(cement) which used to improve the poor geotechnical properties of coal ash, could decrease the pH value into the tolerance limit as well as improve strengtIL durability and permeability. It is concluded that when coal ash is used properly, there is no enviormental harmfulness as construction materials.

  • PDF

Application of Unburned Carbon Produced from Seochun Power Plant (서천화력발전소 매립 석탄재에서 분리한 미연탄소의 재활용 방안)

  • Lee, Sujeong;Cho, Seho;Lee, Young-Seak;An, Eung-Mo;Cho, Sung-Baek
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • Feasibility of utilizing unburned carbon residue in coal ash as a potential precursor for the production of activated carbon was assessed to seek for solution to recycle unburned carbon residue. The unburned carbon concentrate generated from the 4 stages of cleaner flotation has a grade of 87% carbon. The crystalline impurities in the concentrate included quartz and mullite. Unburned carbon had a low specific surface area of $10m^2/g$, which might be related to a high degree of coalification of domestic anthracite coal. Carbon particles were mostly porous and have a turbostratic structure. When 1g of carbon was activated with 6g of KOH powder, the highest specific surface area value of $670m^2/g$ was achieved. Low wettability of unburned carbon particles, which was resulted from high temperature combustion in a boiler, might cause poor pore formation when they were activated by KOH solution. The activated carbon produced in this study developed micropores, with an equivalent quality of general-purpose activated carbon made from coal. Hence, it is concluded that chemically treated unburned carbon can be used for water purification or an alternative to carbon black as it is.

Evaluation of Fly Ash Disposal Methods by Analysis of Leachate Migration (침출수 이동 해석을 통한 석탄재 처분방식의 평가)

  • 이상일
    • Water for future
    • /
    • v.25 no.4
    • /
    • pp.61-73
    • /
    • 1992
  • There are needs to examine the consequences of a regulation in effect to control the migration of leachates from disposal sites. The main objective of this study is to illustrate the methodology to evaluate basic disposal designs for compliance with a certain regulation, The "100/100 rule" is selected for demonstration purpose which dictates that the time for the leachates to travel a horizontal distance of 100feet (30.5m) away from the property where the landfill or pond is located must exceed 100 years. The two primary methods for disposal of ash from coal-fired utility plants, landfill and pond, are studied, Numerical groundwater flow analysis resulted in pressure head distribution and flux information in the cross-section of the domain while path line analysis provided travel path and time of leachate migration to compliance zone.ance zone.

  • PDF

The Evaluation on the Environmental Effect of Coal-Ash and Phosphogypsum as the Evapotranspiration Final Cover Material (증발산 원리를 이용한 매립장 최종 복토공법의 복토재로서 석탄재와 인산석고의 환경적 영향 평가)

  • Yu, Chan;Yang, Kee-Sok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • In this study, the utilization of coal-ash and phosphogypsum was considered as the evapotranspiration final landfill cover(ET cover) material. Cover material considered was the mixture of the weathered granite soil, coal-ash and phosphogypsum and so we sequentially performed the leaching test, column test and field model test to investigate the environmental effects of mixtures of coal-ash and phosphogypsum. In the leaching test, all materials had lower heavy metal concentration than the regulated threshold values. The column test and the review of related regulations were carried out to determine the optimum mixing ratio(OMR) and OMR was soil(4):coal-ash(1): phosphogypsum(1) on the volume base, which was applied to field model test. Field model tests were continued from February to June, 2004 in the soil box that was constructed with cement block. It was verified that coal-ash and phospogypsum mixed with soil was safe environmentally and the mixture of both wastes could improve the water retention capacity of cover materials.

  • PDF