DOI QR코드

DOI QR Code

A Study on Changes in Heavy Metal Contents in Concrete Prepared Using Coal Ashes

석탄재의 콘크리트 활용에 따른 중금속 함량변화 연구

  • Lee, Jinwon (Department of Environmental Engineering, Kunsan National University) ;
  • Choi, Seung-Hyun (Department of Environmental Engineering, Kunsan National University) ;
  • Kim, Kangjoo (Department of Environmental Engineering, Kunsan National University) ;
  • Kim, Seok-Hwi (Institute for Advanced Engineering) ;
  • Moon, Bo-Kyung (Korea Western Power, Co., Ltd.)
  • Received : 2018.08.14
  • Accepted : 2018.08.29
  • Published : 2018.08.28

Abstract

In many countries, recycling coal ashes as backfill materials for subsided lands, abandoned mine tunnels, and road pipeline constructions by making low-strength concretes with minimal amounts of cement is frequently considered for massive treatment of coal ashes. This study investigates the variation of heavy metals in the concrete test pieces prepared for the cases of using only Portland cement as binding material, fly ash as a replacement of the cement, sand as aggregates, and disposed ashes in the ash ponds as a replacement of aggregates. Heavy metal contents were measured based on the aqua regia extraction technique following the Korean Standard for Fair Testing of Soil Contamination and the influences of each materials on the total heavy metal contents were also assessed. Results show that the cement has the highest Cu, Pb, and Zn concentrations than any other materials. Therefore, the test pieces show significant concentration decreases for those metals when the cement was replaced by fly ash. Ponded ash shows low concentrations relative to fly ash in most of the parameters but shows higher Cu and Ni, and lower Pb levels than the sand aggregate. In overall, heavy metal levels of the test pieces are regulated by mixing among the used materials. Test pieces prepared during this study always show concentrations much lower than the Worrisome Level of Soil Contamination (Area 1), which was designated by the Soil Environment Conservation Act of Korea.

많은 나라에서는 화력발전소 석탄연소 잔재물로 생산되는 석탄재를 소량의 시멘트와 혼합, 저강도 콘크리트를 만들어 지반함몰지, 폐갱도, 도로관거 뒷채움재 등으로 재활용하는 방안이 석탄재의 대규모 처리방안으로 자주 검토된다. 본 연구에서는 석탄재로 저강도콘크리트를 만들어 콘크리트 내 중금속함량 변화를 고찰하였다. 이를 위하여 시멘트만을 사용하는 경우와 시멘트의 반을 비산재로 대체하는 경우, 모래를 골재로 사용하는 경우, 그리고 회처리장의 매립재로 모래골재를 대체하는 경우에 대한 콘크리트 공시체를 제작하여 중금속농도 변화를 고찰하였다. 중금속 함량은 토양오염공정시험기준에 따라 이루어졌으며, 중금속함량에 가장 큰 영향을 주는 재료들도 평가하였다. 연구결과, 시멘트는 다른 어떤 재료들 보다 Cu, Pb, Zn에서 현격히 높은 중금속농도를 보였다. 이로 인하여 시멘트를 비산재로 대체할 경우 중금속 농도는 뚜렷이 낮아지는 경향을 보였다. 매립재는 전체적으로 비산재에 비하여 낮은 중금속농도를 보였지만, 모래보다는 높은 Cu 및 Ni농도와 낮은 Pb농도를 보였다. 전체적으로는 콘크리트 내 중금속농도는 각 재료의 혼합에 의하여 결정되는 양상을 보였다. 본 연구에서 제작된 공시체는 모든 조사된 항목에 있어 토양환경보전법이 정한 토양오염우려기준(1지역)보다 현격히 낮은 농도를 보였다.

Keywords

References

  1. ACAA(American Coal Ash Association) (2003) Fly ash facts for highway engineers. Technical Report FHWAIF-03-019.
  2. Achternbosch, M., Brautigam, K.R., Hartlieb, N., Kupsch, C., Richers, U. and Stemmermann, P. (2003) Heavy metals in cement and concrete resulting from the co-incineration of wastes in cement kilns with regard to the legitimacy of waste stabilisation. Forschungszentrum Karlsruhe, FZKA 6923.
  3. Ahmaruzzaman, M. (2010) A review on the utilization of fly ash. Prog. Energy Combust. Sci., v.36, p.327-363. https://doi.org/10.1016/j.pecs.2009.11.003
  4. Bui, P.T., Ogawa, Y,, Nakarai, K. and Kawai, K. (2015) A study on pozzolanic reaction of fly ash cement paste activated by an injection of alkali solution. Constr. Build. Mater., v.94, p.28-34. https://doi.org/10.1016/j.conbuildmat.2015.06.046
  5. Chen, Q.Y., Tyrer, M., Hills, C.D., Yang, X.M., Carey, P. (2009) Immobilisation of heavy metal in cementbased solidification/stabilisation: A review. Waste Management, v. 29, p. 390-403. https://doi.org/10.1016/j.wasman.2008.01.019
  6. Choi, W.H., Lee, S.R. and Park, J.Y. (2009) Cement based solidification/ stabilization of arsenic-contaminated mine tailings. Waste Management, v.29, p.1766-1771. https://doi.org/10.1016/j.wasman.2008.11.008
  7. Eary, L.E., Rai, D., Mattigod, S.V. and Ainsworth, C.C. (1990) Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: II. Review of the minor elements. J. Environ. Qual., v.19, p.202-214.
  8. Hemalatha, T. and Ramsawamy, A. (2017) A review on fly ash characteristics-Towards promoting high volume utilization on developing sustainable concrete. J. Clean. Prod., v.147, p.546-559. https://doi.org/10.1016/j.jclepro.2017.01.114
  9. Jeong, G.Y., Kim, S.H. and Kim, K. (2015) Rare metal chemistry, microstructures, and mineralogy of coal ash from thermal power plants of Korea. J. Miner. Soc. Korea, v.28, p.145-163.
  10. Jiang, N., Zhao, J., Sun, X., Bai, L. and Wang, C. (2017) Use of fly-ash slurry in backfill grouting in coal mines. Heliyon v.3, e00470. doi: 10.1016/j.heliyon.2017.e00470
  11. Jung, B.K., Kim, K. and Kim, S.H. (2012) Environmental assessment for reclamation using coal ash. Academy-Industry Cooperation of Kunsan National University.
  12. Ke, J.Y. (2018) A comparison on heavy metal in cement of Korean and China. M.E. thesis, Kunsan National University.
  13. Kim, K. (2013) A study on the possibility of economic metal extraction from coal ash. Academy-Industry Cooperation of Kunsan National University.
  14. Kim, K., Kim, S.H., Park, S.M., Kim, J. and Choi, M. (2010) Processes controlling the variations of pH, alkalinity, and $CO_2$ partial pressure in the porewater of coal ash disposal site. J. Hazard. Mater., v.181, p.74-81. https://doi.org/10.1016/j.jhazmat.2010.04.089
  15. Kim, K., Park, S.M., Kim, J., Kim, S.H., Kim, Y., Moon, J.T., Hwang, G.S. and Cha, W.S. (2009) Arsenic concentration in porewater of an alkaline coal ash disposal site: Roles of siderite precipitation/dissolution and soil cover. Chemosphere, v.77, p.222-227. https://doi.org/10.1016/j.chemosphere.2009.07.029
  16. Kim, S.H., Choi, S.H., Jeong, G.Y., Lee, J.C. and Kim, K. (2014) A geochemical study on the enrichment of trace elements in the saline ash pond of a bituminousburning power plant in Korea. J. Miner. Soc. Korea, v.27(1), p.31-40. https://doi.org/10.9727/jmsk.2014.27.1.31
  17. Kim, Y., Kim, K. and Jeong, G.Y. (2017) Study of detailed geochemistry of hazardous elements in weathered coal ashes. Fuel, v.193, p.343-350. https://doi.org/10.1016/j.fuel.2016.12.080
  18. Lee, J.W. (2017) An environmental assessment study on the coal ash recycling for road backfill by making lowstrength concrete. M.E. thesis, Kunsan National University.
  19. Lee, J.W., Choi, S.-H., Kim, K. and Moon, B.-K. (2018) Variations in heavy metal analytical results and leaching characteristics of coal ash recycled concretes according to sample crushing methods. Econ. Environ. Geol. (submitted)
  20. Oh, D.W., Kong, S.M., Lee, D.Y., Yoo, Y.S. and Lee, Y.J. (2015) Effects of reinforced pseudo-plastic backfill on the behavior of ground around cavity developed due to sewer leakage. J. Korea Geo-Environ. Soc., v.16(12), p.13-22.
  21. Park, C.K. (2000) Hydration and solidification of hazardous wastes containing heavy metals using modified cementitious materials. Cement and Concrete Research, v.30, p.429-435. https://doi.org/10.1016/S0008-8846(99)00272-0
  22. Rhodes, E.P., Ren, Z. and Mays, D.C. (2012) Zinc leaching from tire crumb rubber. Environ. Sci. Technol., v.46(23), p.12856-12863. https://doi.org/10.1021/es3024379
  23. Sahmaran, M. and Li, V.C. (2009) Engineered cementitious composites: an innovative concrete for durable structure proceedings of ASCE structures congress, Proc., ASCE Structures Congress, Austin, Texas, April-May, 2009.
  24. Sato, M. and Kuwano, R. (2015) Influence of location of subsurface structures on development of underground cavities induced by internal erosion. Soils and Foundations, v.55, p.829-840. https://doi.org/10.1016/j.sandf.2015.06.014
  25. Shi, H.S. and Kan, L.L. (2009) Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete. J. Hazard. Mater., v.164, p.750-754. https://doi.org/10.1016/j.jhazmat.2008.08.077
  26. Taylor, H.F.W. (1997) Cement Chemistry, 2nd(ed.), Thomas Telford Press, London.
  27. Tohda, J. and Hachiya, M. (2005) Response and design of buried pipelines subjected to differential ground settlement. In: Proceedings of 16th International Conference on Soil Mechanics and Geotechnical Engineering, p.1659-1662.
  28. USEPA (2000) Solidification/Stabilization Use at Superfund Sites. EPA-542-R-00-010.
  29. Van der Sloot H.A. (2002) Characterization of the leaching behaviour of concrete mortars and of cement-stabilized wastes with different waste loading for long term environmental assessment. Waste Management, v.22, p.181-186. https://doi.org/10.1016/S0956-053X(01)00067-8
  30. Vysvaril, M. and Bayer, P. (2016) Immobilization of heavy metals in natural zeolite-blended cement pastes. Procedia Engineering, v.151, p.162-169. https://doi.org/10.1016/j.proeng.2016.07.363