DOI QR코드

DOI QR Code

Grinding Effects of Coal-Fired Pond Ash on Compressive Strength of Geopolymers

화력발전소 매립 석탄재의 분쇄가 지오폴리머의 강도에 미치는 영향

  • Received : 2014.07.16
  • Accepted : 2014.11.06
  • Published : 2014.12.31

Abstract

Bottom ash from coal fired power plants is not widely used due to a broad range of particle sizes and a high carbon content for producing geopolymers. The effect of mechanical activation on compressive strength of bottom ash- based geopolymers was examined by rod and planetary-ball milling to encourage full-fledged recycling of bottom ash, the main component of pond ash. The amount of amorphous component in the milled ash samples did not change significantly after the mechanical activation. It is presumably because needle-shaped mullite crystals, which is a major crystalline phase and grown in a glassy matrix, possess high strength and toughness, and therefore, they could endure external shocks and remain almost intact. Milling operation, however, decreased the particle size and improved the homogeneity of ash, thereby leading to increase reactivity of milled ash with alkali activators. Rod milling produced a relatively narrow particle size distribution of the milled ash particles; however, it was less effective in reducing the particle size. Nevertheless, it was interesting to observe that rod milling had equal effect on improving the compressive strength of geopolymers up to about 37%, as that of planetary ball milling. Rod milling is believed to be suitable process for enhancing the reactivity of bottom ash for large-scale recycling of bottom ash and producing geopolymers.

화력발전소 바닥재는 입자크기의 범위가 넓고 미연탄소 함량이 높아 지오폴리머의 원료로 잘 사용되지 않는다. 지오폴리머의 원료로서 바닥재가 대부분인 매립 석탄재를 대량 재활용하기 위한 가공공정을 평가하기 위하여 로드밀과 유성볼밀로 분쇄하여 지오폴리머의 강도에 미치는 영향을 알아보았다. 기계적 분쇄가 바닥재의 비정질 함량 변화에 미치는 영향은 거의 없었다. 이는 석탄재의 주요 결정질 상인 뮬라이트가 침상으로 존재하는데, 침상의 뮬라이트는 높은 강도와 인성을 갖기 때문에 비정질화되기 어렵기 때문으로 판단된다. 그러나 분쇄 효과는 입자크기를 감소시켰으며 매립 석탄재 입자의 크기 분포를 보다 균일하게 하여 알칼리와의 반응성을 증가시켰다. 로드밀은 상대적으로 입자크기의 범위를 좁게 만들었지만 입자크기 감소효과는 적었다. 그럼에도 불구하고 로드밀의 분쇄는 최대 약 37%의 압축강도를 증가시켰으며, 이는 유성볼밀의 효과와 동일하였다. 로드밀 분쇄는 매립 석탄재의 반응성을 증가시켜 지오폴리머의 원료로 대량 재활용하기에 적합한 공정이다.

Keywords

References

  1. Shi, C., Fernandez, A.J. and Palomo, A., 2011 : New Cements for the 21st Century: The Pursuit of an Alternative to Portland Cement, Cem. Concr. Res., 41, pp. 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016
  2. Davidovits, J.,2002 : 30 Years of successes of and failures in geopolymer applications. Market trends and potential breakthroughs, Geopolymer 2002 Conference, Oct 28-29, Melbourne, Australia, pp. 1-16.
  3. Scrivener, K.L, Crumbie, A.K., Laugesen, P., 2004 : The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Science, 12, pp. 411-421. https://doi.org/10.1023/B:INTS.0000042339.92990.4c
  4. Lee, W.K.W. and van Deventer, J.S.J., 2004 : The interface between natural siliceous aggregates and geopolymers, Cem.Concr. Res., 34, pp. 195-206. https://doi.org/10.1016/S0008-8846(03)00250-3
  5. Kang, M.A. and Kang, S., 2011 : Manufacturing of artificial lightweight aggregates using a coal fly ash discharged from fluidized bed combustor, J. Korean Inst. of Resources Recycling, 20, pp. 54-60. https://doi.org/10.7844/kirr.2011.20.1.054
  6. Ul Haq, E., Padmanabhan, S.K. and Licciulli, A., 2014 : Synthesis and characteristics of fly ash and bottom ash based geopolymers - A comparative study, Ceram. Int., 40, pp. 2965-2971. https://doi.org/10.1016/j.ceramint.2013.10.012
  7. Geetha, S. and Ramanurthy, K., 2013 : Properties of geopolymerised low-calcium bottom ash aggregate cured at ambient temperature. Cem. Concr. Comp, 43, pp. 20-30. https://doi.org/10.1016/j.cemconcomp.2013.06.007
  8. Kumar, R., Kumar, S. and Mehrotra, S.P., 2007 : Towards sustainable solutions for fly ash through mechanical activation. Resour. Conserv. Recy., 52, pp. 157-179. https://doi.org/10.1016/j.resconrec.2007.06.007
  9. Nomura, Y., Okata, T., Nakai, S. and Hosomi, M., 2006 : Inhibition of heavy metal elution from fly ashes by mechanochemical treatment and cementation, Kagaku Kogaku Ronbunshu, 32, pp. 196-199. https://doi.org/10.1252/kakoronbunshu.32.196
  10. Heinicke, G., 1984 : Tribochemistry. Akademic-Verlag, Berlin, Germany.
  11. Fernandez-Bertran, F., 1999 : Mechanochemistry: An overview, Pure Appl. Chem., 71, pp. 581-586.
  12. Balaz, P., 2008 : Mechanochemistry in Nanoscience and Minerals Engineering. Springer-Verlag, Berlin Heidelberg, Germany.
  13. Tkacova, K., 1989 : Mechanical activation of minerals. Elsevier, Amsterdam, The Netherlands, ISBN 8022400076.
  14. Guo, X., Xiang, D., Uan, G. and Mou, P., 2013 : A review of mechanochemistry applications in waste management, Waste Manage., 30, pp. 4-10.
  15. Temuujin, J., van Riessen, A. and MacKenzie, K.J.D., 2010 : Preparation and characterization of fly ash based geopolymer mortars, Const. Build. Mater., 24, pp. 1906-1910. https://doi.org/10.1016/j.conbuildmat.2010.04.012
  16. Blanco, F., Garcia, M.P., Ayala, J., Mayoral, G. and Garcia, M.A., 2006 : The effect of mechanically and chemically activated fly ashes on mortar properties., Fuel, 85, pp. 2018-2026. https://doi.org/10.1016/j.fuel.2006.03.031
  17. Fu, X., Li, Q., Zhai, J., Sheng, G. and Li, F., 2008 : The physical-chemical characterization of mechanically-treated CFBC fly ash, Cem. Concr. Comp., 30, pp. 220-226. https://doi.org/10.1016/j.cemconcomp.2007.08.006
  18. Kumar, S. and Kumar, R., 2011 : Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer, Ceramics Int., 37, pp. 533-541. https://doi.org/10.1016/j.ceramint.2010.09.038
  19. Kumar, S., Kumar, R., Alex, T.C., Bandopadhyay, A. and Mehotra, S.P., 2007 : Influence of reactivity of fly ash on geopolymerisation, Adv. Appl. Ceram., 106, pp. 120-127. https://doi.org/10.1179/174367607X159293
  20. Fuerstennau, M.C. and Han, K.N., 2003 : Principles of Mineral Processing, Society for Mining, Metallurgy and Exploration, Inc., Littleton, US.
  21. Williams, R.P. and van Riessen, A., 2010 : Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD, Fuel, 89, pp. 3683-3692. https://doi.org/10.1016/j.fuel.2010.07.031
  22. Heyes, G.W., Kelsall, D.F. and Stewart, P.S.B., 1973, Continuous grinding in a small wet rod mill. Part 1. Comparison with a small ball mill, Powder Technol., 7, pp. 319-325. https://doi.org/10.1016/0032-5910(73)80043-9
  23. Chung, F.H., 1974 : Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures, J. Appl. Crystallogr., 7, pp. 526-531. https://doi.org/10.1107/S0021889874010387
  24. Petruk,W., 2000 : Chapter 1 General principles of applied mineralogy. In : Applied mineralogy in the mining industry. Elsvevier, Amsterdam. PP. 1-26.
  25. Konig, U. and Spicer, E., 2007 : X-ray diffraction (XRD) as a fast industrial analysis method for heavy mineral sands in process control and automation-Rietveld refinement and data clustering. The 6thInternational Heavy Minerals Conference 'Back to Basics', SAIMM, ISBN987-1-920211-07-3.
  26. Chon, C-M, Lee, S. and Lee S.W., 2013 : Quantitative Xray diffraction analysis of synthetic mineral mixtures including amorphous silica using the PONKCS method, J. Miner. Soc. Korea, 26, pp. 27-34. https://doi.org/10.9727/jmsk.2013.26.1.27
  27. Hsiung, C.H.H., Pyzik, A.J., De Carlo, F., Xiao, X., Stock, S.R. and Faber, K.T., 2010 : Microstructure and mechanical properties of acicular mullite, J. Eur. Ceram. Soc., 33, pp. 503-513.
  28. Hulett, L.D. and Weinberger, A.J., 1980 : Some etching studies of the microstructure and composition of large aluminosilicate particles in fly ash from coal-burning power stations, Environ. Sci. Tech.,14, pp. 965-970. https://doi.org/10.1021/es60168a013
  29. Lee, S., Jou, H-T, Chon, C-M, Kang, N-H, Cho, S-B, 2013 : Developing and assessing geopolymers from Seochun pond ash with a range of compositional ratios, J. Kor. Ceram. Soc., 50, pp. 134-141. https://doi.org/10.4191/kcers.2013.50.2.134
  30. Duxson, P., Provis, L., Lukey, G.C., Mallicoat, S.W., Kriven, W. M. and van Deventer, J.S.J., 2005 : Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids Surf. A : Physico-Chem. Eng. Asp., 269, pp. 47-58. https://doi.org/10.1016/j.colsurfa.2005.06.060