본 논문에서는 영상접합 조작 검출을 위한 효율적인 마코프 특징을 추출하는 방법을 제안한다. 제안 방법에서 사용하는 마코프 상태는 이산 코사인 변환 영역에서 인접한 블록간 계수의 차이로 구성되며, 블록간 대칭성을 이용하여 다양한 1차 마코프 천이확률을 접합 검출을 위한 특징으로 추출한다. 아울러 마코프 확률의 분포를 분석하여 특징의 수를 줄이는 방법을 제안한다. 추출된 특징 벡터를 SVM(support vector machine) 분류기를 이용하여 학습한 후 영상의 접합 여부를 판별한다. 실험 결과를 통하여 본 논문의 방법이 기존의 방법보다 적은 수의 특징으로 높은 영상접합 조작 결과를 보임을 확인하였다.
이미지 편집 툴의 발전으로 일반 사용자도 원본 이미지를 조작하여 실제와 다른 영상 정보를 전달하는 것이 가능하게 되었다. 이러한 사회적 변화에 따라 이미지의 신뢰도는 매우 낮아지게 되었고 이미지의 조작여부를 검출하는 시스템의 필요성이 제기되고 있다. 본 논문에서는 마코프 특징을 이용하여 이미지 조작 여부를 검출하는 알고리즘을 제안한다. 제안하는 방법은 전체 입력 이미지에서 마코프 특징을 추출하고, 그 중 위조 여부 검출에 사용되지 않는 불필요한 특징을 제거한다. 따라서 제안하는 기술은 위조 검출에 사용되는 마코프 특징의 수를 감소시켜 전체 검출 속도를 향상시키는 효과가 있다. 실험을 통해 제안하는 방법은 상대적으로 낮은 복잡도로 우수한 위조 검출 성능을 보임을 확인하였다.
본 논문에서는 경향 양자화 기법을 적용하여 분절 특징 은닉 마코프 모델 (HMM: hidden Markov model)의 매개 변수 수를 줄이는 방법을 제안한다. 제안된 방법은 분절 특징 HMM에서 사용하는 분절 특징, 즉 모수적 궤적을 위치 정보와 경향 정보로 분리한 후, 분리된 경향 정보를 경향 코드북을 이용하여 공유한다. 분절 특징에서 위치 정보는 특징의 기준 점을 나타내고, 경향 정보는 분절 특징의 변이를 의미하며 특징의 많은 부분을 차지하고 있다. 따라서 경향 정보가 공유될 수 있다면 분절 특징 HMM의 매개 변수 수를 줄일 수 있을 것이다. 실험 결과 제안된 방식이 기존의 시스템과 비슷한 성능을 보였으며 매개 변수 수를 줄이는 방안으로 고려될 수 있음을 보였다.
지문분류는 대규모 인증시스템에 사용되는 지문 데이터 베이스를 종류별로 인덱싱 하거나 인식 시스템에 다양하게 쓰이는 매우 중요한 방법이다. 지문은 일반적으로 융선의 전체모양 등 전역적인 특징을 기반으로 분류하며, 분류방법에는 규칙기반 접근, 구문론적 접근, 구조적 접근, 통계적 접근, 신경망 기반 접근 등이 있다. 본 논문에서는 지문의 구조적인 특징을 바탕으로 관찰되는 특징의 상태가 매순간 변화하는 확률론적 정보추출 방식인 마코프 모델을 적용한 지문분류 방법을 제안한다. 지문 이미지의 전처리 과정을 거친 후 각 클래스 분류를 위해 대표 융선을 찾아 방향정보를 추출하고 이를 이용하여 5가지 클래스로 분류될 수 있도록 설계하였다. 좋은품질(Good)과 나쁜품질(Poor)의 데이터를 포함한 훈련집합을 사용하여 각 클래스별로 학습된 마코프 모델은 임의의 지문이미지 분류시 높은 분류율을 보였다. 또한 기존의 구조적 접근방법에 비하여 다양한 품질의 지문이미지의 방향성 정보를 이용한 확률론적 방법이기 때문에 예외적인 지문이미지 분류시 잘 적용될 수 있다.
본 연구의 목적은 숨은마코프모형을 사용하여 음성구간의 끝점을 검출하는 문제에서 소음의 환경에서도 강건하며 계산의 부하가 적은 이산형 특징벡터를 제안하고 이의 성질을 실증적으로 밝히는 것이다. 제시된 특징벡터는 일차원의 소리 신호의 에너지의 변화율을 나타내는 경사도이며 숨은마코프모형과 관련된 계산에서의 부하를 감소하기 위하여 세 개의 값으로 이산화하였다. 여러 소음 수준의 끝점 검출의 실험에서, 제시된 특징벡터가 잡음 환경에서도 강건함을 보였다.
최근 다양한 센서들이 일상생활에 활용되어, 일정한 환경에서 사람의 행동을 분류하고 인식하기 위한 연구들이 활발하게 진행되고 있다. 본 연구에서는 2개의 진동센서 값과 1개의 적외선 센서 값을 은닉 마코프 모델에 적용하여 침대 위에 있는 사람의 3가지 행동유형-눕기, 뒤척임, 일어나기-을 분류하고자 한다. 3개 센서 값의 특징들을 기초로 은닉 마코프 모델에 학습시키고, 특징집합과 학습 데이터량을 변화시키면서 사람의 행동유형에 대한 인식 실험을 수행하였다. 특징 개수 혼합에 따른 인식률의 차이는 거의 없는 것으로 나타났으나, 학습 데이터량을 증가시켜 가면서 수행한 실험에서는 인식률이 평균 78.127%로 향상되는 성과를 거두었다.
Communications for Statistical Applications and Methods
/
제15권2호
/
pp.293-302
/
2008
본 논문에서는 숨은마코프모형을 사용하여 음성구간을 추출하는 경우에 사용되는 새로운 특징벡터인 평균파워를 제안하고, 이를 멜주파수 켑스트럴 계수(met frequency cepstral coefficients, MFCC)와 파워계수와 비교한다. 이들 세 가지 특징벡터의 수행력을 비교하기 위하여 일반적으로 추출이 상대적으로 어렵다고 알려진 파열음을 가진 단어에 대한 음성 데이터를 수집하여 실험한다. 다양한 수준의 잡음이 있는 환경에서 음성구간을 추출하는 경우 MFCC나 파워계수에 비해 평균파워가 더 정확하고 효율적임을 실험을 통해 보인다.
본 논문에서는 Kinect 센서를 이용한 팔 제스처 인식 시스템의 설계에 대해 소개한다. 제스처 인식을 위한 기존의 연구들에서는 동적 시간 왜곡(DTW)에서 은닉 마코프 모델(HMM)에 이르기까지 다양한 방법들이 적용되어 왔다. 본 논문에서 제안하는 제스처 인식 시스템은 Kinect 센서를 통해 얻을 수 있는 순차적인 팔 관절 위치 데이터로부터 각 제스처 별 고유한 은닉 마코프 모델을 학습한다. 동일한 제스처를 수행하더라도 Kinect 센서에 포착되는 각 관절의 위치 좌표 값들은 팔의 길이와 방향에 따라 크게 달라질 수 있다는 문제점이 있다. 본 논문에서 제안하는 시스템에서는 다양한 환경 조건에서도 높은 제스처 인식 성능을 얻기 위해, 팔 관절들의 좌표 값으로 구성된 특징 벡터를 팔 관절들 간의 각도 값으로 변환하는 특징 변환 과정을 수행한다. 또한, 본 시스템에서는 은닉 마코프 모델의 학습과 적용의 효율성을 높이기 위해, 고차원 실수 관측 벡터들에 k-평균 군집화를 적용하여 이산 은닉 마코프 모델들을 위한 1차원 정수 시퀀스들을 구한다. 이와 같은 차원 축소와 이산화를 통해, 실시간 환경에서도 은닉 마코프 모델들을 효율적으로 제스처 인식에 이용할 수 있다. 끝으로, 서로 다른 두 가지 데이터 집합을 이용한 실험을 통해, 본 논문에서 제안한 시스템의 높은 인식 성능을 입증해 보인다.
내용 적응적 스테가노그래피는 복잡한 텍스쳐 또는 잡음 영역과 같이 통계적 모델로는 기술하기 어려운 영역에 비밀 메시지를 은닉한다. 이러한 메시지를 검출하기 위해서는 인접 화소간의 국부적인 의존성을 정교하게 모델링해야 하기 때문에 종종 고차원의 특징벡터 추출이 필요하다. 이러한 스테그분석 방법은 계산량이 많을 뿐만 아니라 비밀 메시지의 검출 정확도가 은닉 영역과 사용된 왜곡 척도에 의존한다는 문제점을 가진다. 본 논문에서는 적은 수의 특징 벡터를 이용하여 비밀 메시지의 검출율을 높일 수 있는 개선된 내용 적응적 스테가노그래피의 스테그분석 방법을 제안하고자 한다. 먼저 이산 코사인 변환 계수의 차이를 이용한 특징이 내용 적응적 스테가노그래피의 분석에 유용함을 보이고, 이에 대한 1차 마코프 확률을 특징으로 사용하는 방법을 제시한다. 추출된 특징 벡터는 앙상블 분류기로 입력되어 커버 영상과 스테고 영상을 분류하기 위해 학습된다. 실험 결과 내용 기반 적응적 스테고 영상들에 대해 적은 수의 특징 벡터를 사용함에도 불구하고 기존의 방법에 비해 검출율과 정확도가 우수함을 확인할 수 있었다.
본 논문에서는 은닉 마코프 모델을 이용하여 정상인과 정신분열증 환자의 뇌파에 대한 새로운 자동 판별 방법을 제안하였다. 특징 파라미터로는 통계적 정상구간에 대한 분산과 알파파, 베타파, 세타파의 전력비를 이용하였다. 실험 결과, 정상인의 경우에는 90.9%, 정신분열증 환자의 경우에는 90.5%의 높은 판별 정확성을 보였으며 이는 제안한 시스템이 복잡한 신호처리과정을 이용하는 시스템보다 효과적임을 알 수 있다. 따라서, 은닉 마코프 모델이 뇌파와 같은 복잡한 생체신호의 분석과 판별에 사용될 수 있으며 제안한 방법이 임상적인 전단에 상당한 도움이 될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.