• 제목/요약/키워드: 마코프 특징

검색결과 43건 처리시간 0.023초

접합영상 검출을 위한 효율적인 마코프 특징 추출 방법 (Efficient Markov Feature Extraction Method for Image Splicing Detection)

  • 한종구;박태희;엄일규
    • 전자공학회논문지
    • /
    • 제51권9호
    • /
    • pp.111-118
    • /
    • 2014
  • 본 논문에서는 영상접합 조작 검출을 위한 효율적인 마코프 특징을 추출하는 방법을 제안한다. 제안 방법에서 사용하는 마코프 상태는 이산 코사인 변환 영역에서 인접한 블록간 계수의 차이로 구성되며, 블록간 대칭성을 이용하여 다양한 1차 마코프 천이확률을 접합 검출을 위한 특징으로 추출한다. 아울러 마코프 확률의 분포를 분석하여 특징의 수를 줄이는 방법을 제안한다. 추출된 특징 벡터를 SVM(support vector machine) 분류기를 이용하여 학습한 후 영상의 접합 여부를 판별한다. 실험 결과를 통하여 본 논문의 방법이 기존의 방법보다 적은 수의 특징으로 높은 영상접합 조작 결과를 보임을 확인하였다.

마코프 특징을 이용하는 고속 위조 영상 검출 알고리즘 (Fast Image Splicing Detection Algorithm Using Markov Features)

  • 김수민;박천수
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.227-232
    • /
    • 2018
  • 이미지 편집 툴의 발전으로 일반 사용자도 원본 이미지를 조작하여 실제와 다른 영상 정보를 전달하는 것이 가능하게 되었다. 이러한 사회적 변화에 따라 이미지의 신뢰도는 매우 낮아지게 되었고 이미지의 조작여부를 검출하는 시스템의 필요성이 제기되고 있다. 본 논문에서는 마코프 특징을 이용하여 이미지 조작 여부를 검출하는 알고리즘을 제안한다. 제안하는 방법은 전체 입력 이미지에서 마코프 특징을 추출하고, 그 중 위조 여부 검출에 사용되지 않는 불필요한 특징을 제거한다. 따라서 제안하는 기술은 위조 검출에 사용되는 마코프 특징의 수를 감소시켜 전체 검출 속도를 향상시키는 효과가 있다. 실험을 통해 제안하는 방법은 상대적으로 낮은 복잡도로 우수한 위조 검출 성능을 보임을 확인하였다.

분절 특징 은닉 마코프 모델에서의 경향 공유에 관한 연구 (A Study on Trend Sharing in Segmental-feature HMM)

  • 윤영선
    • 한국음향학회지
    • /
    • 제21권7호
    • /
    • pp.641-647
    • /
    • 2002
  • 본 논문에서는 경향 양자화 기법을 적용하여 분절 특징 은닉 마코프 모델 (HMM: hidden Markov model)의 매개 변수 수를 줄이는 방법을 제안한다. 제안된 방법은 분절 특징 HMM에서 사용하는 분절 특징, 즉 모수적 궤적을 위치 정보와 경향 정보로 분리한 후, 분리된 경향 정보를 경향 코드북을 이용하여 공유한다. 분절 특징에서 위치 정보는 특징의 기준 점을 나타내고, 경향 정보는 분절 특징의 변이를 의미하며 특징의 많은 부분을 차지하고 있다. 따라서 경향 정보가 공유될 수 있다면 분절 특징 HMM의 매개 변수 수를 줄일 수 있을 것이다. 실험 결과 제안된 방식이 기존의 시스템과 비슷한 성능을 보였으며 매개 변수 수를 줄이는 방안으로 고려될 수 있음을 보였다.

마코프 모텔 기반 지문의 구조적 특징 분류 (Markov Models based Classification of Fingerprint Structural Features)

  • 정혜욱;원종진;김문현
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2005년도 추계학술대회 및 정기총회
    • /
    • pp.33-38
    • /
    • 2005
  • 지문분류는 대규모 인증시스템에 사용되는 지문 데이터 베이스를 종류별로 인덱싱 하거나 인식 시스템에 다양하게 쓰이는 매우 중요한 방법이다. 지문은 일반적으로 융선의 전체모양 등 전역적인 특징을 기반으로 분류하며, 분류방법에는 규칙기반 접근, 구문론적 접근, 구조적 접근, 통계적 접근, 신경망 기반 접근 등이 있다. 본 논문에서는 지문의 구조적인 특징을 바탕으로 관찰되는 특징의 상태가 매순간 변화하는 확률론적 정보추출 방식인 마코프 모델을 적용한 지문분류 방법을 제안한다. 지문 이미지의 전처리 과정을 거친 후 각 클래스 분류를 위해 대표 융선을 찾아 방향정보를 추출하고 이를 이용하여 5가지 클래스로 분류될 수 있도록 설계하였다. 좋은품질(Good)과 나쁜품질(Poor)의 데이터를 포함한 훈련집합을 사용하여 각 클래스별로 학습된 마코프 모델은 임의의 지문이미지 분류시 높은 분류율을 보였다. 또한 기존의 구조적 접근방법에 비하여 다양한 품질의 지문이미지의 방향성 정보를 이용한 확률론적 방법이기 때문에 예외적인 지문이미지 분류시 잘 적용될 수 있다.

  • PDF

숨은마코프모형을 이용하는 음성 끝점 검출을 위한 이산 특징벡터 (A Discrete Feature Vector for Endpoint Detection of Speech with Hidden Markov Model)

  • 이재기;오창혁
    • 응용통계연구
    • /
    • 제21권6호
    • /
    • pp.959-967
    • /
    • 2008
  • 본 연구의 목적은 숨은마코프모형을 사용하여 음성구간의 끝점을 검출하는 문제에서 소음의 환경에서도 강건하며 계산의 부하가 적은 이산형 특징벡터를 제안하고 이의 성질을 실증적으로 밝히는 것이다. 제시된 특징벡터는 일차원의 소리 신호의 에너지의 변화율을 나타내는 경사도이며 숨은마코프모형과 관련된 계산에서의 부하를 감소하기 위하여 세 개의 값으로 이산화하였다. 여러 소음 수준의 끝점 검출의 실험에서, 제시된 특징벡터가 잡음 환경에서도 강건함을 보였다.

은닉 마코프 모델을 이용한 행동 분류 연구 (A Study on Human Behavior Classification using a Hidden Markov Model)

  • 서정우;오현교;조승호;이호석;문봉희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1354-1357
    • /
    • 2013
  • 최근 다양한 센서들이 일상생활에 활용되어, 일정한 환경에서 사람의 행동을 분류하고 인식하기 위한 연구들이 활발하게 진행되고 있다. 본 연구에서는 2개의 진동센서 값과 1개의 적외선 센서 값을 은닉 마코프 모델에 적용하여 침대 위에 있는 사람의 3가지 행동유형-눕기, 뒤척임, 일어나기-을 분류하고자 한다. 3개 센서 값의 특징들을 기초로 은닉 마코프 모델에 학습시키고, 특징집합과 학습 데이터량을 변화시키면서 사람의 행동유형에 대한 인식 실험을 수행하였다. 특징 개수 혼합에 따른 인식률의 차이는 거의 없는 것으로 나타났으나, 학습 데이터량을 증가시켜 가면서 수행한 실험에서는 인식률이 평균 78.127%로 향상되는 성과를 거두었다.

숨은마코프모형을 이용하는 음성구간 추출을 위한 특징벡터 (A New Feature for Speech Segments Extraction with Hidden Markov Models)

  • 홍정우;오창혁
    • Communications for Statistical Applications and Methods
    • /
    • 제15권2호
    • /
    • pp.293-302
    • /
    • 2008
  • 본 논문에서는 숨은마코프모형을 사용하여 음성구간을 추출하는 경우에 사용되는 새로운 특징벡터인 평균파워를 제안하고, 이를 멜주파수 켑스트럴 계수(met frequency cepstral coefficients, MFCC)와 파워계수와 비교한다. 이들 세 가지 특징벡터의 수행력을 비교하기 위하여 일반적으로 추출이 상대적으로 어렵다고 알려진 파열음을 가진 단어에 대한 음성 데이터를 수집하여 실험한다. 다양한 수준의 잡음이 있는 환경에서 음성구간을 추출하는 경우 MFCC나 파워계수에 비해 평균파워가 더 정확하고 효율적임을 실험을 통해 보인다.

특징 변환과 은닉 마코프 모델을 이용한 팔 제스처 인식 시스템의 설계 (Design of an Arm Gesture Recognition System Using Feature Transformation and Hidden Markov Models)

  • 허세경;신예슬;김혜숙;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권10호
    • /
    • pp.723-730
    • /
    • 2013
  • 본 논문에서는 Kinect 센서를 이용한 팔 제스처 인식 시스템의 설계에 대해 소개한다. 제스처 인식을 위한 기존의 연구들에서는 동적 시간 왜곡(DTW)에서 은닉 마코프 모델(HMM)에 이르기까지 다양한 방법들이 적용되어 왔다. 본 논문에서 제안하는 제스처 인식 시스템은 Kinect 센서를 통해 얻을 수 있는 순차적인 팔 관절 위치 데이터로부터 각 제스처 별 고유한 은닉 마코프 모델을 학습한다. 동일한 제스처를 수행하더라도 Kinect 센서에 포착되는 각 관절의 위치 좌표 값들은 팔의 길이와 방향에 따라 크게 달라질 수 있다는 문제점이 있다. 본 논문에서 제안하는 시스템에서는 다양한 환경 조건에서도 높은 제스처 인식 성능을 얻기 위해, 팔 관절들의 좌표 값으로 구성된 특징 벡터를 팔 관절들 간의 각도 값으로 변환하는 특징 변환 과정을 수행한다. 또한, 본 시스템에서는 은닉 마코프 모델의 학습과 적용의 효율성을 높이기 위해, 고차원 실수 관측 벡터들에 k-평균 군집화를 적용하여 이산 은닉 마코프 모델들을 위한 1차원 정수 시퀀스들을 구한다. 이와 같은 차원 축소와 이산화를 통해, 실시간 환경에서도 은닉 마코프 모델들을 효율적으로 제스처 인식에 이용할 수 있다. 끝으로, 서로 다른 두 가지 데이터 집합을 이용한 실험을 통해, 본 논문에서 제안한 시스템의 높은 인식 성능을 입증해 보인다.

DCT 계수의 마코프 특징을 이용한 내용 적응적 스테가노그래피의 스테그분석 (Steganalysis of Content-Adaptive Steganography using Markov Features for DCT Coefficients)

  • 박태희;한종구;엄일규
    • 전자공학회논문지
    • /
    • 제52권8호
    • /
    • pp.97-105
    • /
    • 2015
  • 내용 적응적 스테가노그래피는 복잡한 텍스쳐 또는 잡음 영역과 같이 통계적 모델로는 기술하기 어려운 영역에 비밀 메시지를 은닉한다. 이러한 메시지를 검출하기 위해서는 인접 화소간의 국부적인 의존성을 정교하게 모델링해야 하기 때문에 종종 고차원의 특징벡터 추출이 필요하다. 이러한 스테그분석 방법은 계산량이 많을 뿐만 아니라 비밀 메시지의 검출 정확도가 은닉 영역과 사용된 왜곡 척도에 의존한다는 문제점을 가진다. 본 논문에서는 적은 수의 특징 벡터를 이용하여 비밀 메시지의 검출율을 높일 수 있는 개선된 내용 적응적 스테가노그래피의 스테그분석 방법을 제안하고자 한다. 먼저 이산 코사인 변환 계수의 차이를 이용한 특징이 내용 적응적 스테가노그래피의 분석에 유용함을 보이고, 이에 대한 1차 마코프 확률을 특징으로 사용하는 방법을 제시한다. 추출된 특징 벡터는 앙상블 분류기로 입력되어 커버 영상과 스테고 영상을 분류하기 위해 학습된다. 실험 결과 내용 기반 적응적 스테고 영상들에 대해 적은 수의 특징 벡터를 사용함에도 불구하고 기존의 방법에 비해 검출율과 정확도가 우수함을 확인할 수 있었다.

은닉 마코프 모델을 이용한 정신질환자의 뇌파 판별 (The Classification of the Schizophrenia EEG Signal using Hidden Markov Model)

  • 이경일;김필운;조진호;김명남
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권3호
    • /
    • pp.217-225
    • /
    • 2004
  • 본 논문에서는 은닉 마코프 모델을 이용하여 정상인과 정신분열증 환자의 뇌파에 대한 새로운 자동 판별 방법을 제안하였다. 특징 파라미터로는 통계적 정상구간에 대한 분산과 알파파, 베타파, 세타파의 전력비를 이용하였다. 실험 결과, 정상인의 경우에는 90.9%, 정신분열증 환자의 경우에는 90.5%의 높은 판별 정확성을 보였으며 이는 제안한 시스템이 복잡한 신호처리과정을 이용하는 시스템보다 효과적임을 알 수 있다. 따라서, 은닉 마코프 모델이 뇌파와 같은 복잡한 생체신호의 분석과 판별에 사용될 수 있으며 제안한 방법이 임상적인 전단에 상당한 도움이 될 것으로 기대된다.