• Title/Summary/Keyword: 마르코프 연쇄

Search Result 31, Processing Time 0.018 seconds

Efficient Bayesian Inference on Asymmetric Jump-Diffusion Models (비대칭적 점프확산 모형의 효율적인 베이지안 추론)

  • Park, Taeyoung;Lee, Youngeun
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.959-973
    • /
    • 2014
  • Asset pricing models that account for asymmetric volatility in asset prices have been recently proposed. This article presents an efficient Bayesian method to analyze asset-pricing models. The method is developed by devising a partially collapsed Gibbs sampler that capitalizes on the functional incompatibility of conditional distributions without complicating the updates of model components. The proposed method is illustrated using simulated data and applied to daily S&P 500 data observed from September 1980 to August 2014.

Prediction of extreme rainfall with a generalized extreme value distribution (일반화 극단 분포를 이용한 강우량 예측)

  • Sung, Yong Kyu;Sohn, Joong K.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.857-865
    • /
    • 2013
  • Extreme rainfall causes heavy losses in human life and properties. Hence many works have been done to predict extreme rainfall by using extreme value distributions. In this study, we use a generalized extreme value distribution to derive the posterior predictive density with hierarchical Bayesian approach based on the data of Seoul area from 1973 to 2010. It becomes clear that the probability of the extreme rainfall is increasing for last 20 years in Seoul area and the model proposed works relatively well for both point prediction and predictive interval approach.

The Probabilistic Analysis of Fatigue Damage Accumulation Behavior Using Markov Chain Model in CFRP Composites (Markov Chain Model을 이용한 CFRP 복합재료의 피로손상누적거동에 대한 확률적 해석)

  • Kim, Do-Sik;Kim, In-Bai;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1241-1250
    • /
    • 1996
  • The characteristics of fatigue cumulative damage and fatigue life of 8-harness satin woven CFRP composites with a circular hole under constant amplitude and 2-level block loading are estimated by Stochastic Makov chain model. It is found in this study that the fatigue damage accumulation behavior is very random and the fatigue damage is accumulated as two regions under constant amplitude fatigue loading. In constant amplitude fatigue loading the predicted mean number of cycles to a specified damage state by Markov chain model shows a good agreement with the test result. The predicted distribution of the fatigue cumulative damage by Markov chain model is similar to the test result. The fatigue life predictions under 2-level block loading by Markov chain model revised are good fitted to the test result more than by 2-parameter Weibull distribution function using percent failure rule.

An estimation method for stochastic reaction model (확률적 방법에 기반한 화학 반응 모형의 모수 추정 방법)

  • Choi, Boseung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.813-826
    • /
    • 2015
  • This research deals with an estimation method for kinetic reaction model. The kinetic reaction model is a model to explain spread or changing process based on interaction between species on the Biochemical area. This model can be applied to a model for disease spreading as well as a model for system Biology. In the search, we assumed that the spread of species is stochastic and we construct the reaction model based on stochastic movement. We utilized Gillespie algorithm in order to construct likelihood function. We introduced a Bayesian estimation method using Markov chain Monte Carlo methods that produces more stable results. We applied the Bayesian estimation method to the Lotka-Volterra model and gene transcription model and had more stable estimation results.

Bayesian Approaches to Zero Inflated Poisson Model (영 과잉 포아송 모형에 대한 베이지안 방법 연구)

  • Lee, Ji-Ho;Choi, Tae-Ryon;Wo, Yoon-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.677-693
    • /
    • 2011
  • In this paper, we consider Bayesian approaches to zero inflated Poisson model, one of the popular models to analyze zero inflated count data. To generate posterior samples, we deal with a Markov Chain Monte Carlo method using a Gibbs sampler and an exact sampling method using an Inverse Bayes Formula(IBF). Posterior sampling algorithms using two methods are compared, and a convergence checking for a Gibbs sampler is discussed, in particular using posterior samples from IBF sampling. Based on these sampling methods, a real data analysis is performed for Trajan data (Marin et al., 1993) and our results are compared with existing Trajan data analysis. We also discuss model selection issues for Trajan data between the Poisson model and zero inflated Poisson model using various criteria. In addition, we complement the previous work by Rodrigues (2003) via further data analysis using a hierarchical Bayesian model.

Bayesian Analysis of Dose-Effect Relationship of Cadmium for Benchmark Dose Evaluation (카드뮴 반응용량 곡선에서의 기준용량 평가를 위한 베이지안 분석연구)

  • Lee, Minjea;Choi, Taeryon;Kim, Jeongseon;Woo, Hae Dong
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.453-470
    • /
    • 2013
  • In this paper, we consider a Bayesian analysis of the dose-effect relationship of cadmium to evaluate a benchmark dose(BMD). For this purpose, two dose-response curves commonly used in the toxicity study are fitted based on Bayesian methods to the data collected from the scientific literature on cadmium toxicity. Specifically, Bayesian meta-analysis and hierarchical modeling build an overall dose-effect relationship that use a piecewise linear model and Hill model, where the inter-study heterogeneity and inter-individual variability of dose and effect such as gender, age and ethnicity are accounted. Estimation of the unknown parameters is made by using a Markov chain Monte Carlo algorithm based user-friendly software WinBUGS. Benchmark dose estimates are evaluated for various cut-offs and compared with different tested subpopulations with with gender, age and ethnicity based on these two Bayesian hierarchical models.

Bayesian inference on multivariate asymmetric jump-diffusion models (다변량 비대칭 라플라스 점프확산 모형의 베이지안 추론)

  • Lee, Youngeun;Park, Taeyoung
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.99-112
    • /
    • 2016
  • Asymmetric jump-diffusion models are effectively used to model the dynamic behavior of asset prices with abrupt asymmetric upward and downward changes. However, the estimation of their extension to the multivariate asymmetric jump-diffusion model has been hampered by the analytically intractable likelihood function. This article confronts the problem using a data augmentation method and proposes a new Bayesian method for a multivariate asymmetric Laplace jump-diffusion model. Unlike the previous models, the proposed model is rich enough to incorporate all possible correlated jumps as well as mention individual and common jumps. The proposed model and methodology are illustrated with a simulation study and applied to daily returns for the KOSPI, S&P500, and Nikkei225 indices data from January 2005 to September 2015.

The Risk Assessment and Prediction for the Mixed Deterioration in Cable Bridges Using a Stochastic Bayesian Modeling (확률론적 베이지언 모델링에 의한 케이블 교량의 복합열화 리스크 평가 및 예측시스템)

  • Cho, Tae Jun;Lee, Jeong Bae;Kim, Seong Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.29-39
    • /
    • 2012
  • The main objective is to predict the future degradation and maintenance budget for a suspension bridge system. Bayesian inference is applied to find the posterior probability density function of the source parameters (damage indices and serviceability), given ten years of maintenance data. The posterior distribution of the parameters is sampled using a Markov chain Monte Carlo method. The simulated risk prediction for decreased serviceability conditions are posterior distributions based on prior distribution and likelihood of data updated from annual maintenance tasks. Compared with conventional linear prediction model, the proposed quadratic model provides highly improved convergence and closeness to measured data in terms of serviceability, risky factors, and maintenance budget for bridge components, which allows forecasting a future performance and financial management of complex infrastructures based on the proposed quadratic stochastic regression model.

Variational Bayesian multinomial probit model with Gaussian process classification on mice protein expression level data (가우시안 과정 분류에 대한 변분 베이지안 다항 프로빗 모형: 쥐 단백질 발현 데이터에의 적용)

  • Donghyun Son;Beom Seuk Hwang
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.115-127
    • /
    • 2023
  • Multinomial probit model is a popular model for multiclass classification and choice model. Markov chain Monte Carlo (MCMC) method is widely used for estimating multinomial probit model, but its computational cost is high. However, it is well known that variational Bayesian approximation is more computationally efficient than MCMC, because it uses subsets of samples. In this study, we describe multinomial probit model with Gaussian process classification and how to employ variational Bayesian approximation on the model. This study also compares the results of variational Bayesian multinomial probit model to the results of naive Bayes, K-nearest neighbors and support vector machine for the UCI mice protein expression level data.

Bayesian ordinal probit semiparametric regression models: KNHANES 2016 data analysis of the relationship between smoking behavior and coffee intake (베이지안 순서형 프로빗 준모수 회귀 모형 : 국민건강영양조사 2016 자료를 통한 흡연양태와 커피섭취 간의 관계 분석)

  • Lee, Dasom;Lee, Eunji;Jo, Seogil;Choi, Taeryeon
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.25-46
    • /
    • 2020
  • This paper presents ordinal probit semiparametric regression models using Bayesian Spectral Analysis Regression (BSAR) method. Ordinal probit regression is a way of modeling ordinal responses - usually more than two categories - by connecting the probability of falling into each category explained by a combination of available covariates using a probit (an inverse function of normal cumulative distribution function) link. The Bayesian probit model facilitates posterior sampling by bringing a latent variable following normal distribution, therefore, the responses are categorized by the cut-off points according to values of latent variables. In this paper, we extend the latent variable approach to a semiparametric model for the Bayesian ordinal probit regression with nonparametric functions using a spectral representation of Gaussian processes based BSAR method. The latent variable is decomposed into a parametric component and a nonparametric component with or without a shape constraint for modeling ordinal responses and predicting outcomes more flexibly. We illustrate the proposed methods with simulation studies in comparison with existing methods and real data analysis applied to a Korean National Health and Nutrition Examination Survey (KNHANES) 2016 for investigating nonparametric relationship between smoking behavior and coffee intake.