• Title/Summary/Keyword: 로켓엔진 시험

Search Result 435, Processing Time 0.028 seconds

Study on Liquid Rocket Engine High Altitude Simulation Test (액체로켓엔진 고공환경 모사시험 연구)

  • Kim, Seung-Han;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.733-736
    • /
    • 2010
  • Korea Aerospace Research Institute (KARI) performed the preliminary design of liquid rocket engine high-altitude simulation firing test facility for the development and qualification of LRE for the 2nd stage of KSLV-II. The engine high-altitude simulation firing test facility, which are to be constructed at Goheung Space Center, will provide liquid oxygen and kerosene to enable the high-altitude simulation firing test of 2nd stage engine at ground test facility. The high-altitude environment is obtained using a supersonic diffuser operated by the self-ejecting jet from the liquid rocket engine.

  • PDF

Investigation of Chill Down Characteristics of Liquid Oxygen Feeding System in 75 Tonf-class Liquid Rocket Engine Firing Test (75톤급 액체로켓엔진 연소시험에서의 액체산소 공급부 예냉특성 고찰)

  • Seo, Daeban;Cho, Namkyung;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.108-116
    • /
    • 2018
  • A firing test of the 75 tonf-class liquid rocket engine to be used as the first and second stage engines of the KSLV-II was carried out at the rocket engine test facility(RETF). Since this engine uses liquid oxygen as the oxidizer, which is a cryogenic fluid, it is essential that the chill down of the supply pipe line and engine proceed for the firing test; thus, the given inlet requirements must be met. Moreover, it is important to understand the chill down characteristics of the facility and the engine and the amount of liquid oxygen consumed in the chill down process for efficient test operation in the future. In this paper, chill down characteristics of the supply pipe and the engine were evaluated through the investigation of the chill down process of the 75 tonf-class liquid rocket engine at each stage before and after run tank pressurization. In addition, the amount of liquid oxygen consumed was also evaluated.

An Analysis on Plume Behaviour of Rocket Engine with Ground Condition at High Altitude Engine Test Facility (고공시험설비에서 로켓엔진의 지상시험 플룸 거동 해석)

  • Kim, Seong-Lyong;Lee, SeungJae;Han, YoungMin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.112-115
    • /
    • 2017
  • We analyzed the rocket engine flow to check whether the possibility of the ground test and the equipment safety problems in the high altitude engine test facility. The test condition is that the vacuum chamber is open and the coolant water is injected into the supersonic diffuser. The analysis uses two-dimensional axisymmetry with a mixture of plume, air, and cooling water. As a result, the ground test was possible up to the cooling water flow rate of 200 kg/sec. However, due to the back flow of the initial plume, the vacuum chamber is exposed to high temperature, and at the same time, the inside of the vacuum chamber is contaminated due to the reverse flow of the cooling water. Therefore, sufficient insulation measures and work for pollution avoidance should be preceded.

  • PDF

Ground Firing Test Facility of Hybrid Rocket Engine (하이브리드로켓엔진 지상연소시험 설비)

  • Kim, Soo-Jong;Kim, Gi-Hun;Cho, Jung-Tae;Cho, Min-Kyoung;Do, Gyu-Sung;So, Jung-Soo;Heo, Jun-Young;Lee, Jung-Pyo;Park, Su-Hayng;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.251-254
    • /
    • 2008
  • Ground firing test facility and test field for firing test of hybrid rocket engine were constructed. Ground firing test facility were composed of hybrid rocket engine, thrust stand, oxidizer storage/supply system, control system and data acquisition system. Firing tests of thrust 50 kgf class were conducted. Stable performance data was obtained and operational reliability of ground firing test facility were found.

  • PDF

Study on the Liquid Rocket Engine Health Monitoring and Emergency Protection System (액체로켓엔진 상태진단/비상보호시스템 연구)

  • Kim, Seung-Han;Nam, Chang-Ho;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.178-182
    • /
    • 2007
  • This paper reviews on the LRE health monitoring and emergency protection system to protect test object engine system and engine test facility, in case of various fault occurrence at LRE testing. General composition and major technical consideration of LRE health monitoring system and emergency protection system are reviewed. Moreover, some application of LRE health monitoring/emergency protection system to development test of major LRE component such as turbopump testing, gas generator and combustion chamber test are reviewed.

  • PDF

A Correction Method for Operating Mode Analysis of Gas Generator Cycle Liquid Propellant Rocket Engine (가스발생기 사이클 액체로켓엔진작동 모드 해석의 보정 방법)

  • Nam, Chang-Ho;Moon, Yoonwan;Park, Soon Young;Chung, Enhwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.104-110
    • /
    • 2018
  • Operating mode analysis of a liquid propellant rocket engine(LRE) is a crucial tool through the development of an engine. The operating mode analysis of an engine based on a collection of the acceptance tests of components shows discrepancies when compared to the test results. We propose a correction method for performance parameters to develop an engine analysis model for the gas generator cycle of an LRE. In order to simulate engine behavior, the performance parameters for the analysis model are tuned based on the test results of the 75tf engine of KSLV-II.

케로신/액체산소 다단연소 사이클 로켓엔진용 산화제 과잉 예연소기 기술

  • Mun, Il-Yun;Yu, Jae-Han;Ha, Seong-Eop;Mun, In-Sang;Lee, Su-Yong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.151.2-151.2
    • /
    • 2012
  • 터보펌프 구동에 사용된 가스발생기 생성가스를 연소기로 공급하여 주추력 발생에 사용하는 다단연소 사이클 로켓엔진은 고추력을 요하는 우주 발사체에 널리 사용되고 있다. 다단연소 사이클 로켓엔진에 사용되는 가스발생기를 예연소기라 부르며 케로신과 액체산소를 추진제로 하는 다단연소 사이클 로켓엔진에는 산화제 과잉 예연소기가 사용된다. 예연소기는 터보펌프 구동을 목적으로 하기 때문에 예연소기 생성가스의 횡단면 온도분포는 터빈에 의해 제한되는 온도범위 내에서 균일하여야 하며 넓은 운전영역에서 안정적인 연소가 이루어져야 한다. 산화제 과잉 예연소기는 모든 추진제가 혼합헤드를 통해 분사되는 방식과 추진제를 혼합헤드와 연소실로 나누어 공급하는 방식이 있다. 기술검증을 위해 산화제 일부와 연료를 혼합헤드를 통해 연소실에 공급하여 1차 연소시키고 나머지 산화제를 연소실 냉각채널을 거쳐 연소실 중앙의 분사공을 통해 연소실로 주입하여 기화시키는 형태로 최종적으로 연소압 20MPa, 혼합비 60에서 작동하는 산화제 과잉 예연소기를 설계하여 연소시험을 수행하였다. 혼합헤드에는 별도의 점화용 분사기 없이 전체 연료 분사기를 통해 점화용 연료인 TEA/TEB 혼합물을 분사하여 점화하였다. 추진제를 2단으로 공급할 수 있도록 고안된 가압식 연소시험 설비에서 10회, 누적 60초 이상의 연소시험이 성공적으로 수행되었다. 연소시험결과 넓은 작동영역에서 안정적 연소특성과 생성가스 온도 분포의 균일성을 확인할 수 있었다. 고온 고압의 산화제 과잉 예연소기 기술 확보를 통해 케로신/액체산소 다단연소 사이클 로켓엔진 개발을 위한 기술적 기반을 마련하였다.

  • PDF

Design of Turbopump+Gas Generator Coupled Test (터보펌프+가스발생기 연계시험 설계)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheol-Woong;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.196-200
    • /
    • 2006
  • This paper describes the current development status of the major subsystems, turbopump and gas generator, for a turbopump-fed liquid oxygen-kerosene rocket engine system. As a secondary stage of the liquid rocket engine development test, turbopump-gas generator powerpack tests are planned. The schematics of the test hardware and the test facility for the TP+GG coupled test are presented. The results of a preliminary analysis for operating regimes of the TP+GG coupled test are also presented.

  • PDF

Test Facility Improvement for Hot Firing Test of a 7-tonf Combustor in Sub-scale model (7톤급 연소기 축소형 모델 시험을 위한 설비 개량)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Kim, Hyeon-Jun;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.498-501
    • /
    • 2012
  • The Model Rocket Engine Test Facility has been improved to develop the Korea Space Launch Vehicle II(KSLV-II). The modified Model Rocket Engine Test Facility will be used to develop 7-tonf class liquid rocket engine combustor. The test result and test technique acquired from this facility will be used to develop the high performance liquid rocket engine combustor. This paper describes the modified Model Rocket Engine Test Facility for a Sub-scale model test of the 7-tonf class combustor.

  • PDF

LOx/kerosene Sub-scale LRE Firing Test Facility (액체산소/케로신 소형로켓엔진 연소시험설비)

  • Kim Seung-Han;Lim Byoung-Jik;Han Yeoung-Min;Seol Woo-Seok;Lee Soo-Yong;Moon Il-Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.166-169
    • /
    • 2004
  • This paper describes the design, installation and certification activity of a combustion test facility of subscale thrust chambers propelled by pressure-fed liquid oxygen and kerosene, and suggests major key issues considered at each development stage of the facility

  • PDF