본 논문에서는 로봇 시각 처리 활용을 위한 실시간 얼굴 검출 하드웨어 구조를 제안한다. 제안한 구조는 조명 변화에 강인하고 초당 60 프레임 이상의 속도로 처리된다. 조명 변화에 강인한 얼굴 특성 추출을 위해 MCT(Modified Census Transform) 변환을 이용하였다. 그리고 AdaBoost 알고리즘은 얼굴 특징 데이터의 학습 및 생성을 하며, 이 생성된 학습 데이터를 이용해 얼굴 검출을 하게 된다. 본 논문에서는 메모리 인터페이스부, 이미지 크기 조정부, MCT 생성부, 후보 얼굴 검출부, 신뢰도 비교부, 좌표 재조정부, 데이터 그룹화부, 검출 결과 표시부로 구성된 얼굴 검출 하드웨어 구조 및 Xilinx사의 Virtex5 LX330 FPGA를 이용한 하드웨어 구현 검증 결과에 대해 설명한다. 카메라로 부터 입력받은 이미지를 이용해 검증한 결과로 초당 최대 149프레임의 속도로 한 프레엠 당 최대 32개 얼굴을 검출함을 확인하였다.
실시간영상에서 객체의 분할 및 추적은 침입자 감시와 로봇의 물체 추적, 증강현실의 객체 추적등 다양한 분야에서 사용되고 있다. 본 논문에서는 초기 입력 영상의 일부를 학습하여 배경모델로 제작한 후, 배경제거 방법을 이용하여 움직이는 객체의 분할을 통해 객체를 검출하였다. 검출된 객체의 영역을 기반으로 HSV 색상히스토그램과 파티클 필터를 이용하여 객체의 움직임을 추적하는 방법을 제안한다. 제안한 분할 방법은 평균 배경모델을 이용한 방법보다 주변환경 변화의 영향을 적게 받으며, 움직이는 객체의 검출 성능이 더욱 우수하였다. 또한 단일 객체 및 다수의 객체가 존재하는 환경에서 추적 객체가 유사한 색상 객체와 겹치는 경우, 추적 객체의 영역 절반 이상이 가려지는 경우에도 지속적으로 추적하는 결과를 얻을 수 있었다. 2개의 비디오 영상을 사용한 실험결과는 평균 중첩율 85.9%, 추적률 96.3%의 성능을 보여준다.
대화 시스템은 사용자의 의도를 파악하기 위해 발화 문장으로부터 다양한 형태론적 분석을 시도한다. 하지만 사용자는 발화 문장에 포함된 사전적 의미를 통해 의도를 전달할 뿐만 아니라 현재 감정 상태에 따라서 사전적 의미와는 다른 의도를 표현하거나 동일한 의미를 갖는 발화에서 다양한 의도를 표현한다. 따라서 대화에서 사용자의 감정을 파악하는 것은 사용자의 의도를 다양한 방향으로 분석할 수 있게 한다. 본 연구는 기계 학습 방법을 사용하여 사용자 발화 문장에 자동으로 감정 범주를 할당하는 방법을 제안한다. 일반적 감정 범주를 정의하기 위해 세부적인 감정 모델로 인정받고 있는 Plutchick의 감정 모델을 사용하여 9개 감정 범주를 재 정의하고 감정 분류를 위한 자질 집합을 문장 자질과 선험적 자질 그리고 문맥 자질로 구분하였다. 실험을 통하여 3가지 자질들의 최적 조합을 구성하고 감정의 자동 분류를 위해 SVM 분류기를 사용하였다. 실험 결과에서 제안 시스템은 비교 시스템에 비해 15% 높은 62.8%의 F1-평가치 성능을 나타냄으로서 제안된 방법이 감정 분류에 효과적임을 증명한다.
최근 맞벌이 가구의 수가 늘어나고 출산율도 함께 저하되면서 집에 홀로 방치되는 초등학교 학생이 전체 초등학생의 3분의 1이 넘는다고 한다. 전국 초등학교에서는 방과 후 돌봄 교실이란 정책을 시행하고 있지만 그것마저도 교실의 수를 정부에서 줄이고 있는 상황이다. 이처럼 보호자들은 아이들의 집에 혼자 두는 것을 피할 수 없고 방치 된 아이들의 하루를 궁금해 할 수밖에 없는 현실이다. 이런 보호자들과 초등학교 고학년 학생들을 위해 자기 일과를 스스로 계획하고 실천 할 수 있는 서비스를 제안하고자 한다. 이 서비스로 인해 아이는 자기조절학습능력을 키울 수 있고 보호자들은 홀로 집에 방치되어 있는 아이가 스스로 어떤 계획을 세우고 실천하고 있는지 앱을 통해 피드백을 받아 안심할 수 있다.
최근 ICT분야가 다양한 환경에서 사용되면서 지속가능한 농업 환경에서는 ICT 기술들을 활용하여 농작물별 병충해 분석, 농작물 수확시 로봇 사용, 빅 데이터로 인한 예측 등이 가능해졌다. 그러나, 지속 가능한 농업 환경에서는 자원의 고갈, 농업 인구 감소, 빈곤 증가, 환경 파괴 등을 해결하기 위한 노력이 꾸준히 요구되고 있다. 본 연구에서는 지속 가능한 농업 환경 기반의 농작물의 생산 비용 감소 및 효율성을 증가하기 위한 인공지능 기반 빅 데이터 처리 기법을 제안한다. 제안 기법은 AI를 결합한 농작물의 빅 데이터를 처리함으로써 데이터의 보안성과 신뢰성을 강화하고, 더 나은 의사 결정과 비즈니스 가치 추출이 가능하다. 이는 다양한 산업과 분야에서 혁신적인 변화를 이끌어내고, 데이터 중심의 비즈니스 모델의 발전을 촉진할 수 있다. 실험과정에서 제안 기법은 다량의 데이터가 생성되나, 일일이 정답을 태깅하기 힘든 농장 현장에서, 소량의 데이터에 대해서만 정확한 정답을 부여하고, 정답이 부여되지 않은 다량의 데이터와 함께 학습하여, 다량의 정답 데이터로 학습했을 때와 유사한 성능(오차율:0.05 이내)이 나타났다.
IWSN(Industrial Wireless Sensor Network)는 센서, 로봇, 기계 등의 산업 장비들을 무선으로 연결하여 공정 모니터링 및 제어를 통한 산업 자동화 실현을 가능하게 하는 산업 IoT의 핵심 기술로써 실시간, 신뢰성, 에너지 효율 등 현대 산업환경의 엄격한 요구사항을 지원해야 한다. 이를 위해 IWSN에서는 다중 라우팅 경로 설정, 고정적 중복자원 할당 및 비경쟁 기반 스케줄링 등 신뢰적 통신 방식이 사용된다. 그러나 활용되지 않는 무선 자원의 낭비는 한정된 무선 자원의 효율뿐만 아니라 에너지 효율을 저하한다. 본 논문에서는 통신 스케줄링 시 강화학습을 활용하여 사용되지 않는 할당된 무선 자원을 파악하고, 이를 반영한 자원 재할당을 통해 전체 산업 네트워크의 에너지 소모를 절약하는 방안을 제안한다. 실험을 통한 성능평가 결과, 제안 방안은 높은 전송 신뢰성을 유지하면서도 기존 방법에 비해 약 30% 향상된 스케줄링 자원 효율을 보였다. 또한, 불필요한 통신을 줄임으로써 에너지 효율 및 전송지연이 각각 21%, 38% 이상 개선됨을 확인하였다.
본 연구에서는 감정을 표현하기 위한 표정 연습을 보조하는 인공지능을 개발하였다. 개발한 인공지능은 서술형 문장과 표정 이미지로 구성된 멀티모달 입력을 심층신경망에 사용하고 서술형 문장에서 예측되는 감정과 표정 이미지에서 예측되는 감정 사이의 유사도를 계산하여 출력하였다. 사용자는 서술형 문장으로 주어진 상황에 맞게 표정을 연습하고 인공지능은 서술형 문장과 사용자의 표정 사이의 유사도를 수치로 출력하여 피드백한다. 표정 이미지에서 감정을 예측하기 위해 ResNet34 구조를 사용하였으며 FER2013 공공데이터를 이용해 훈련하였다. 자연어인 서술형 문장에서 감정을 예측하기 위해 KoBERT 모델을 전이학습 하였으며 AIHub의 감정 분류를 위한 대화 음성 데이터 세트를 사용해 훈련하였다. 표정 이미지에서 감정을 예측하는 심층신경망은 65% 정확도를 달성하여 사람 수준의 감정 분류 능력을 보여주었다. 서술형 문장에서 감정을 예측하는 심층신경망은 90% 정확도를 달성하였다. 감정표현에 문제가 없는 일반인이 개발한 인공지능을 이용해 표정 연습 실험을 수행하여 개발한 인공지능의 성능을 검증하였다.
기계학습(Machine Learning)은 인공 지능의 한 분야로, 데이터를 이용하여 기계를 학습시켜 기계 스스로가 데이터 분석 및 예측을 하게 만드는 것과 관련한 컴퓨터 과학의 한 영역을 일컫는다. 그중에서 SVM(Support Vector Machines)은 주로 분류와 회귀 분석을 목적으로 사용되는 모델이다. 어느 두 집단에 속한 데이터들에 대한 정보를 얻었을 때, SVM 모델은 주어진 데이터 집합을 바탕으로 하여 새로운 데이터가 어느 집단에 속할지를 판단해준다. 최근 들어서 많은 금융전문가는 기계학습과 막대한 데이터가 존재하는 금융 분야와의 접목 가능성을 보며 기계학습에 집중하고 있다. 그러면서 각 금융사는 고도화된 알고리즘과 빅데이터를 통해 여러 금융업무 수행이 가능한 로봇(Robot)과 투자전문가(Advisor)의 합성어인 로보어드바이저(Robo-Advisor) 서비스를 발 빠르게 제공하기 시작했다. 따라서 현재의 금융 동향을 고려하여 본 연구에서는 기계학습 방법의 하나인 SVM을 활용하여 매매성과를 올리는 방법에 대해 제안하고자 한다. SVM을 통한 예측대상은 한국형 변동성지수인 VKOSPI이다. VKOSPI는 금융파생상품의 한 종류인 옵션의 가격에 영향을 미친다. VKOSPI는 흔히 말하는 변동성과 같고 VKOSPI 값은 옵션의 종류와 관계없이 옵션 가격과 정비례하는 특성이 있다. 그러므로 VKOSPI의 정확한 예측은 옵션 매매에서의 수익을 낼 수 있는 중요한 요소 중 하나이다. 지금까지 기계학습을 기반으로 한 VKOSPI의 예측을 다룬 연구는 없었다. 본 연구에서는 SVM을 통해 일 중의 VKOSPI를 예측하였고, 예측 내용을 바탕으로 옵션 매매에 대한 적용 가능 여부를 실험하였으며 실제로 향상된 매매 성과가 나타남을 증명하였다.
In this paper, we propose the method of a motion planning generation in which the movement of the 3-link leg subsystem is constrained to a slider-link and a singular posture can be easily avoided. The proposed method is the jumping control moving in vertical direction which mimics a cat's behavior. That is, it is jumping toward wall and kicking it to get a higher-place. Considering the movement from the point of constraint mechanical system, the robotic system which realizes the motion changes its configuration according to the position and it has several phases such as; ⅰ) an one-leg phase, ⅱ) in an air-phase. In other words, the system is under nonholonomic constraint due to the reservation of its momentum. Especially, in an air-phase, we will use a control method using state transformation and linearization in order to control the landing posture. Also, an iterative learning control algorithm is applied in order to improve the robustness of the control. The simulation results for jumping control will illustrate the effectiveness of the proposed control method.
얼굴표정 인식은 심리학 연구, 얼굴 애니메이션 합성, 로봇공학, HCI(Human Computer Interaction) 등 다양한 분야에서 중요성이 증가하고 있다. 얼굴표정은 사람의 감정 표현, 관심의 정도와 같은 사회적 상호작용에 있어서 중요한 정보를 제공한다. 얼굴표정 인식은 크게 정지영상을 이용한 방법과 동영상을 이용한 방법으로 나눌 수 있다. 정지영상을 이용할 경우에는 처리량이 적어 속도가 빠르다는 장점이 있지만 얼굴의 변화가 클 경우 매칭, 정합에 의한 인식이 어렵다는 단점이 있다. 동영상을 이용한 얼굴표정 인식 방법은 신경망, Optical Flow, HMM(Hidden Markov Models) 등의 방법을 이용하여 사용자의 표정 변화를 연속적으로 처리할 수 있어 실시간으로 컴퓨터와의 상호작용에 유용하다. 그러나 정지영상에 비해 처리량이 많고 학습이나 데이터베이스 구축을 위한 많은 데이터가 필요하다는 단점이 있다. 본 논문에서 제안하는 실시간 얼굴표정 인식 시스템은 얼굴영역 검출, 얼굴 특징 검출, 얼굴표정 분류, 아바타 제어의 네 가지 과정으로 구성된다. 웹캠을 통하여 입력된 얼굴영상에 대하여 정확한 얼굴영역을 검출하기 위하여 히스토그램 평활화와 참조 화이트(Reference White) 기법을 적용, HT 컬러모델과 PCA(Principle Component Analysis) 변환을 이용하여 얼굴영역을 검출한다. 검출된 얼굴영역에서 얼굴의 기하학적 정보를 이용하여 얼굴의 특징요소의 후보영역을 결정하고 각 특징점들에 대한 템플릿 매칭과 에지를 검출하여 얼굴표정 인식에 필요한 특징을 추출한다. 각각의 검출된 특징점들에 대하여 Optical Flow알고리즘을 적용한 움직임 정보로부터 특징 벡터를 획득한다. 이렇게 획득한 특징 벡터를 SVM(Support Vector Machine)을 이용하여 얼굴표정을 분류하였으며 추출된 얼굴의 특징에 의하여 인식된 얼굴표정을 아바타로 표현하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.