• Title/Summary/Keyword: 로보어드바이저 알고리즘

Search Result 9, Processing Time 0.025 seconds

Robo-Advisor Profitability combined with the Stock Price Forecast of Analyst (애널리스트의 주가 예측이 결합된 로보어드바이저의 수익성 분석)

  • Kim, Sun-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.199-207
    • /
    • 2019
  • This study aims to analyze the profitability of Robo-Advisors portfolio combined with the analysts' forecasts on the Korean stock prices. Sample stocks are 8 blue-chips and sample period is from 2003 to 2019. Robo-Advisor portfolio was suggested using the Black-Litterman model combined with the analysts' forecasts and its profitability was analyzed. Empirical result showed the suggested Robo-Advisor algorithm produced 1% annual excess return more than that of the benchmark. The study documented that the analysts' forecasts had an economic value when applied in the Robo-Advisor portfolio despite the prevalent blames from investors. The profitability on small or medium-sized stocks will need to be analyzed in the Robo-Advisor context because their information is relatively less known to investors and as such is expected to be strongly influenced by the analysts' forecasts.

A Study on Building a Financial Prediction System with Artificial Intelligence Robo-Advisor (인공지능 로보어드바이저를 통한 재테크 예측 시스템 구축에 관한 연구)

  • Kim, Minki;Kim, Yeonsu;Yang, Jeong-Woo;Jo, Sunkeun;Moon, Jaehyun
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.745-748
    • /
    • 2020
  • 국민연금이 2056 년 고갈될 수 있다는 전망이 나오면서 연금소득에 대한 국민들의 불안감이 커졌다. 노후를 위해 미리 대비해야한다는 인식이 커지며 자동으로 투자해주는 '로보어드바이저'에 대한 사회적 관심이 함께 높아졌다. 본 연구에서는 기존 시중 은행들의 펀드 기반 로보어드바이저가 아닌 기업 재무 정보, 수정 종가 데이터를 이용한 직접 투자를 고안하였다. LGBM 알고리즘으로 포트폴리오를 구현해본 결과 실제 퀀트 투자에서 사용되는 지표들이 주식의 변화를 예측하는데 효과가 있음을 확인할 수 있었다.

The Performance Comparative Analysis System for Stock Price Forecasting on AI Environment (AI 기반환경의 주식 시세예측을 위한 성능 비교분석 시스템)

  • Lee, Cheol-Hyeon;Oh, Ryumduck
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.127-128
    • /
    • 2022
  • 최근 많은 증권사 및 다양한 금융사기업에서 투자자의 주식투자를 돕는 투자자문 인공지능, 로보어드바이저를 제안하고 활용한다. 본 논문에서는 증권사 등에서 사용되고 있는 주식 시세예측 알고리즘의 성능을 상호 비교분석한다. 주식 시계열 데이터 예측에 용이한 4가지의 인공지능 알고리즘인 LSTM, GRU, 딥Q 네트워크강화학습, XGBoost 알고리즘의 성능을 분석하고 비교하는 시스템을 구현하였다. 본 연구에서는 구현된 성능 분석 시스템을 통해 어떤 알고리즘이 주식 시세를 예측하고 활용하기 위해 가장 좋은 성능을 가졌는지 비교분석하고 해당 시스템의 결과분석이 주식예측에 어떠한 영향을 주는지를 평가한다.

  • PDF

Development and Performance Analysis of Predictive Model for KOSPI 200 Index using Recurrent Neural Networks (순환 신경망 기술을 이용한 코스피 200 지수에 대한 예측 모델 개발 및 성능 분석 연구)

  • Kim, Sung Soo;Hong, Kwang Jin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.6
    • /
    • pp.23-29
    • /
    • 2017
  • Due to the success of Wealthfront, Betterment, etc., there is a growing interest in RoboAdvisor that is an automated asset allocation methodology globally. RoboAdvisor minimizes human involvement in managing assets, thereby reducing the costs of using services and eliminating human psychological factors. In this paper, we developed a predictive model for the KOSPI 200 Futures Index using deep learning, in order to replace the existing technical analysis technique. And the proposed model confirmed that When the KOSPI 200 Gift Index is small, it can be used to predict direction and price of index. In combination with the existing technical analysis, It is confirmed that the proposed models combining with existing technical analyses and can be applied to the RoboAdvisor Service in the future.

Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)

  • Kim, Sunwoong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-55
    • /
    • 2019
  • Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.

A deep learning analysis of the KOSPI's directions (딥러닝분석과 기술적 분석 지표를 이용한 한국 코스피주가지수 방향성 예측)

  • Lee, Woosik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.287-295
    • /
    • 2017
  • Since Google's AlphaGo defeated a world champion of Go players in 2016, there have been many interests in the deep learning. In the financial sector, a Robo-Advisor using deep learning gains a significant attention, which builds and manages portfolios of financial instruments for investors.In this paper, we have proposed the a deep learning algorithm geared toward identification and forecast of the KOSPI index direction,and we also have compared the accuracy of the prediction.In an application of forecasting the financial market index direction, we have shown that the Robo-Advisor using deep learning has a significant effect on finance industry. The Robo-Advisor collects a massive data such as earnings statements, news reports and regulatory filings, analyzes those and recommends investors how to view market trends and identify the best time to purchase financial assets. On the other hand, the Robo-Advisor allows businesses to learn more about their customers, develop better marketing strategies, increase sales and decrease costs.

Development of Stock Investment System Using Machine Learning (머신러닝을 활용한 주식 투자 시스템 구현)

  • Nam, Gibaek;Jang, Jeongsik;Oh, Hun;Kim, Taehyung
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.810-812
    • /
    • 2017
  • 최근 기계학습에 대한 관심이 높아지면서 금융 분야에서는 인공지능을 이용하여 투자 포트폴리오를 제안하는 로보어드바이저(robo-advisor)를 출시하고 있다. 이는 고객에게 저렴한 수수료를 제공하며 높은 접근성, 인건비의 절감 등의 장점으로 이를 도입하여 다양한 상품을 개발하고 있다. 본 연구에서는 머신러닝 알고리즘인 SVM(support vector machine)과 kNN(k-nearest neighbor)을 활용하여 매월 12개월 이전의 KOSPI 지수 데이터를 학습시킨 후 예측하는 투자 시스템을 구현하였다. 실험결과 SVM이 2.90413배의 성적으로 가장 우수했으며 수익률은 Precision(예측정확도)와 비례함을 보였다. 또한 수익곡선은 추세에 따라 유사한 형태를 보인 성과를 도출하였다.

A Study on Risk Parity Asset Allocation Model with XGBoos (XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구)

  • Kim, Younghoon;Choi, HeungSik;Kim, SunWoong
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.135-149
    • /
    • 2020
  • Artificial intelligences are changing world. Financial market is also not an exception. Robo-Advisor is actively being developed, making up the weakness of traditional asset allocation methods and replacing the parts that are difficult for the traditional methods. It makes automated investment decisions with artificial intelligence algorithms and is used with various asset allocation models such as mean-variance model, Black-Litterman model and risk parity model. Risk parity model is a typical risk-based asset allocation model which is focused on the volatility of assets. It avoids investment risk structurally. So it has stability in the management of large size fund and it has been widely used in financial field. XGBoost model is a parallel tree-boosting method. It is an optimized gradient boosting model designed to be highly efficient and flexible. It not only makes billions of examples in limited memory environments but is also very fast to learn compared to traditional boosting methods. It is frequently used in various fields of data analysis and has a lot of advantages. So in this study, we propose a new asset allocation model that combines risk parity model and XGBoost machine learning model. This model uses XGBoost to predict the risk of assets and applies the predictive risk to the process of covariance estimation. There are estimated errors between the estimation period and the actual investment period because the optimized asset allocation model estimates the proportion of investments based on historical data. these estimated errors adversely affect the optimized portfolio performance. This study aims to improve the stability and portfolio performance of the model by predicting the volatility of the next investment period and reducing estimated errors of optimized asset allocation model. As a result, it narrows the gap between theory and practice and proposes a more advanced asset allocation model. In this study, we used the Korean stock market price data for a total of 17 years from 2003 to 2019 for the empirical test of the suggested model. The data sets are specifically composed of energy, finance, IT, industrial, material, telecommunication, utility, consumer, health care and staple sectors. We accumulated the value of prediction using moving-window method by 1,000 in-sample and 20 out-of-sample, so we produced a total of 154 rebalancing back-testing results. We analyzed portfolio performance in terms of cumulative rate of return and got a lot of sample data because of long period results. Comparing with traditional risk parity model, this experiment recorded improvements in both cumulative yield and reduction of estimated errors. The total cumulative return is 45.748%, about 5% higher than that of risk parity model and also the estimated errors are reduced in 9 out of 10 industry sectors. The reduction of estimated errors increases stability of the model and makes it easy to apply in practical investment. The results of the experiment showed improvement of portfolio performance by reducing the estimated errors of the optimized asset allocation model. Many financial models and asset allocation models are limited in practical investment because of the most fundamental question of whether the past characteristics of assets will continue into the future in the changing financial market. However, this study not only takes advantage of traditional asset allocation models, but also supplements the limitations of traditional methods and increases stability by predicting the risks of assets with the latest algorithm. There are various studies on parametric estimation methods to reduce the estimated errors in the portfolio optimization. We also suggested a new method to reduce estimated errors in optimized asset allocation model using machine learning. So this study is meaningful in that it proposes an advanced artificial intelligence asset allocation model for the fast-developing financial markets.

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.