DOI QR코드

DOI QR Code

Robo-Advisor Profitability combined with the Stock Price Forecast of Analyst

애널리스트의 주가 예측이 결합된 로보어드바이저의 수익성 분석

  • Kim, Sun-Woong (Major in Trading System, Graduate School of Business IT, Kookmin University)
  • 김선웅 (국민대학교 비즈니스IT전문대학원 트레이딩시스템전공)
  • Received : 2019.07.19
  • Accepted : 2019.09.20
  • Published : 2019.09.28

Abstract

This study aims to analyze the profitability of Robo-Advisors portfolio combined with the analysts' forecasts on the Korean stock prices. Sample stocks are 8 blue-chips and sample period is from 2003 to 2019. Robo-Advisor portfolio was suggested using the Black-Litterman model combined with the analysts' forecasts and its profitability was analyzed. Empirical result showed the suggested Robo-Advisor algorithm produced 1% annual excess return more than that of the benchmark. The study documented that the analysts' forecasts had an economic value when applied in the Robo-Advisor portfolio despite the prevalent blames from investors. The profitability on small or medium-sized stocks will need to be analyzed in the Robo-Advisor context because their information is relatively less known to investors and as such is expected to be strongly influenced by the analysts' forecasts.

우리나라 주식시장에서 애널리스트들이 발표하는 주가 전망 자료를 입력변수로 활용한 로보어드바이저 포트폴리오의 수익성이 있는지를 분석하고자 하였다. 포트폴리오 구성을 위한 표본 주식은 업종을 대표하는 8개의 우량주이며, 분석 기간은 2003년부터 2019년까지의 17년 자료이다. 표본 주식에 대한 주가와 애널리스트 주가 전망 자료를 결합하는 블랙리터만모형을 통해 로보어드바이저 포트폴리오를 추천하고 벤치마크 대비 수익성을 비교하였다. 실증 분석 결과, 애널리스트들의 주가 전망 자료를 결합한 로보어드바이저 알고리즘의 수익성은 벤치마크 포트폴리오보다 연평균 1% 이상의 초과 수익을 시현하였다. 투자자들의 비판적 시각에도 불구하고 개별 종목에 대한 투자가 아닌 상대적 투자 비중을 구하는 로보어드바이저 관점에서는 애널리스트들의 주가 전망 자료가 경제적 가치를 보유하고 있음을 밝혔다. 향후 연구에서는 애널리스트들의 주가 전망 영향력이 대형주보다 더 클 것으로 예측되는 중 소형주를 포함한 로보어드바이저 포트폴리오의 수익성을 분석할 필요가 있다.

Keywords

References

  1. M. Beketov, K. Lehmann & M. Wittke. (2018). Robo Advisors: quantitative methods inside the robots. Journal of Asset Management, 19(6), 363-370. DOI: 10.1057/s41260-018-0092-9
  2. F. Black & R. Litterman. (1991). Asset allocation: Combining investor views with market equilibrium. The Journal of Fixed Income, 1(2), 7-18. DOI : 10.3905/jfi.1991.408013
  3. A. Duqi, L. Franci & G. Torluccio. (2014). The Black-Litterman model: The definition of views based on volatility forecasts. Applied Financial Economics, 24(19), 1285-1296. DOI: 10.1080/09603107.2014.925056
  4. M. Kara, A. Ulucan & K. B. Atici. (2019). A hybrid approach for generating investor views in Black-Litterman model. Expert Systems with Applications, 128, 256-270. DOI: 10.1016/j.eswa.2019.03.041
  5. S. W. Kim. (2019). Robo-Advisor algorithm with intelligent view model. Journal of Intelligence and Information Systems, 25(2), 39-55. DOI: 10.13088/jiis.2019.25.2.039
  6. S. Pyo & J. Lee. (2018). Exploiting the low-risk anomaly using machine learning to enhance the Black-Litterman framework: Evidence from South Korea. Pacific-Basin Finance Journal, 51, 1-12. DOI: 10.1016/j.pacfin.2018.06.002
  7. P. Reddy. (2018). Black-Litterman portfolios with machine learning derived views. available at www.researchgate.net. DOI: 10.13140/RG.2.2.26727.96160
  8. E. Fama. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383-417. DOI: 10.2307/2325486
  9. S. Basu. (1977). Investment performance of common stocks in relation to their price-earnings ratios: A test of the efficient market hypothesis. The Journal of Finance, 32(3), 663-682. DOI: 10.1111/j.1540-6261.1977.tb01979.x
  10. J. W. Joung & S. H. Lee. (2017). The effect of information asymmetry between accounting information provider and users on information user decision. Journal of Convergence for Information Technology, 7(2), 125-130. DOI: 10.22156/CS4SMB.2017.7.2.125
  11. J. I. Choi. (2015). Convergence analysis about volatility of the stock markets before and after the currency crisis. Journal of Digital Convergence, 13(8), 153-160. DOI: 10.14400/JDC.2015.13.8.153
  12. K. Y. Kim, G. R. Lee & S. W. Lee. (2013). A comparative analysis of artificial intelligence system and Ohlson model for IPO firm;s stock price evaluation. Journal of Digital Policy & Management, 11(5), 145-158.
  13. H. Markowitz. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. DOI: 10.2307/2975974
  14. P. Kolm, R. Tutuncu & F. Fabozzi. (2014). 60 years of portfolio optimization: Practical challenges and current trends. European Journal of Operational Research, 234, 356-371. DOI: 10.1016/j.ejor.2013.10.060
  15. R. Green & B. Hollifield. (1992). When will mean-variance efficient portfolios be well diversified? The Journal of Finance, 47(5), 1785-1809. DOI: 10.2307/2328996
  16. J. Walters. (2014). The Black-Litterman model in detail. https://ssrn.com/abstract=1314585 DOI: 10.2139/ssrn.1314585
  17. M. Best & R. Grauer. (1991). On the sensitivity of mean-variance-efficient portfolios to changes in asset means: Some analytical and computational results. The Review of Financial Studies, 4(2), 315-342. DOI: 10.1093/rfs/4.2.315
  18. B. Fernandes, A. Street, C. Fernandes & D. Valladao. (2018). On an adaptive Black-Litterman investment strategy using conditional fundamentalist information: A Brazilian case study. Finance Research Letters, 27, 201-207. DOI: 10.1016/j.frl.2018.03.006
  19. P. He, A. Grant & J. Fabre. (2013). Economic value of analyst recommendations in Australia: an application of the Black-Litterman asset allocation model. Accounting and Finance, 53(2), 441-470. DOI: 10.1111/j.1467-629X.2012.00509.x
  20. L. Chen, Z. Da & E. Schaumburg. (2015). Implementing Black-Litterman using an equivalent formula and equity analyst target prices. The Journal of Investing, 24(1), 34-47. DOI: 10.3905/joi.2015.24.1.034
  21. J. Song, Y. Lee & G. Park. (2012). Sector investment strategy with the Black-Litterman model. Korean Management Science Review, 29(1), 57-71. DOI: 10.7737/KMSR.2012.29.1.057
  22. N. Jegadeesh, J. Kim, S. Krische & C. Lee. (2004). Analyzing the analysts: When do recommendations add value? The Journal of Finance, 59(3), 1083-1124. DOI: 10.1111/j.1540-6261.2004.00657.x
  23. K. Womack. (1996). Do brokerage analysts' recommendations have investment value? The Journal of Finance, 51(1), 137-167. DOI: 10.1111/j.1540-6261.1996.tb05205.x
  24. B. Barber, R. Lehavy, M. McNichols & B. Trueman. (2001). Can investors profit from the prophets? Security analyst recommendations and stock returns. The Journal of Finance, 56(2), 531-563. DOI: 10.1111/0022-1082.00336
  25. N. Jegadeesh & W. Kim. (2006). Value of analyst recommendations: International evidence. Journal of Financial Markets, 9(1), 274-309. DOI: 10.1017/S0022109000002404
  26. C. U. Hong, S. H. Lee & K. I. Kim. (2017). The effect of analysts' earnings forecasts dividend announcements on stock returns. Journal of Convergence for Information Technology, 7(3), 105-109. DOI: 10.22156/CS4SMB.2017.7.3.105
  27. J. Byun & K. Kim. (2005). Information contents in securities companies' daily recommendations. Korean Journal of Financial Studies, 34(4), 29-67.
  28. Y. Eom. (2013). The investment value of analysts' revisions in their stock recommendation: Domestic vs foreign analyst. Journal of Knowledge Studies, 11(3), 137-159.
  29. H. Lee, Y. Lee & J. Moon. (2015). The study about stock market response to analysts; revision in their stock recommendation. Journal of Industrial Economics and Business, 28(1), 403-425.
  30. S. Stickel. (1995). The anatomy of the performance of buy and sell recommendations. Financial Analysts Journal, 51(5), 25-39. DOI: 10.2469/faj.v51.n5.1933
  31. C. Green. (2006). The value of client access to analyst recommendations. Journal of Financial and Quantitative Analysis, 41(1), 1-24. DOI: 10.1017/S0022109000002404
  32. T. Idzorek. (2005). A step-by-step guide to the Black-Litterman model. Working Paper. DOI: 10.1016/B978-075068321-0.50003-0
  33. S. Satchell & A. Scowcroft. (2000). A demystification of the Black-Litterman model: Managing quantitative and traditional construction. Journal of Asset Management, 1(2), 138-150. DOI: 10.1057/palgrave.jam