DOI QR코드

DOI QR Code

A deep learning analysis of the KOSPI's directions

딥러닝분석과 기술적 분석 지표를 이용한 한국 코스피주가지수 방향성 예측

  • Lee, Woosik (Department of Information Statistics, Anyang University)
  • 이우식 (안양대학교 정보통계학과)
  • Received : 2017.01.17
  • Accepted : 2017.03.10
  • Published : 2017.03.31

Abstract

Since Google's AlphaGo defeated a world champion of Go players in 2016, there have been many interests in the deep learning. In the financial sector, a Robo-Advisor using deep learning gains a significant attention, which builds and manages portfolios of financial instruments for investors.In this paper, we have proposed the a deep learning algorithm geared toward identification and forecast of the KOSPI index direction,and we also have compared the accuracy of the prediction.In an application of forecasting the financial market index direction, we have shown that the Robo-Advisor using deep learning has a significant effect on finance industry. The Robo-Advisor collects a massive data such as earnings statements, news reports and regulatory filings, analyzes those and recommends investors how to view market trends and identify the best time to purchase financial assets. On the other hand, the Robo-Advisor allows businesses to learn more about their customers, develop better marketing strategies, increase sales and decrease costs.

2016년 3월 구글 (Google)의 바둑인공지능 알파고 (AlphaGo)가 이세돌 9단과의 바둑대결에서 승리한 이후 다양한 분야에서 인공지능 사용에 대한 관심이 높아지고 있는 가운데 금융투자 분야에서도 인공지능과 투자자문 전문가의 합성어인 로보어드바이저 (Robo-Advisor)에 대한 관심이 높아지고 있다. 인공지능 (artificial intelligence)기반의 의사결정은 비용 절감은 물론 효과적인 의사결정을 가능하게 한다는 점에서 큰 장점이 있다. 본 연구에서는 기술적 분석 (technical analysis) 지표와 딥러닝 (deep learning) 모형을 결합하여 한국 코스피 지수를 예측하는 모형을 개발하고 제시한 모형들의 예측력을 비교, 분석한다. 분석 결과 기술적 분석 지표에 딥러닝 알고리즘을 결합한 모형이 주가지수 방향성 예측 문제에 응용될 수 있음을 확인하였다. 향후 본 연구에서 제안된 기술적 분석 지표와 딥러닝모형을 결합한 기법은 로보어드바이저서비스에 응용할 수 있는 일반화 가능성을 보여준다.

Keywords

References

  1. Chang, W. (2016). The rise of Robo Advisors. Forbes, 11, 214.
  2. Choi, H. and Lim, D. (2013). Bankruptcy prediction using ensemble SVM model. Journal of the Korean Data & Information Science Society, 24, 1113-1125. https://doi.org/10.7465/jkdi.2013.24.6.1113
  3. Choi, H. and Min, Y. (2015). Introduction to deep learning. Korea Information Processing Society Review, 22, 7-21.
  4. Hinton, G. and Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504-507. https://doi.org/10.1126/science.1127647
  5. Jung, J. and Min, D. (2013). The study of foreign exchange trading revenue model using decision tree and gradient boosting. Journal of the Korean Data & Information Science Society, 24, 161-170. https://doi.org/10.7465/jkdi.2013.24.1.161
  6. Jung, S. and Park, S. (2016). Examination of possible financial market risk accumulations due to prolongation of low interest rates. BOK Financial Stability Report, 27,132-143.
  7. Ko, Y. (2016). A study on the measures to activate the Introduction of the Robo-Advisor in Korea. Korea Science & Art Forum, 25, 19-33. https://doi.org/10.17548/ksaf.2016.09.25.19
  8. Kwak, M. and Rhee, S. (2016). Finding factors on employment by adult life cycle using decision tree model. Journal of the Korean Data & Information Science Society, 27, 1537-1545. https://doi.org/10.7465/jkdi.2016.27.6.1537
  9. Lee, W. and Chun, H. (2016). A deep learning analysis of the Chinese Yuan's volatility in the onshore and offshore markets. Journal of the Korean Data & Information Science Society, 27, 327-335. https://doi.org/10.7465/jkdi.2016.27.2.327

Cited by

  1. On neural networks and learning systems for business computing 2018, https://doi.org/10.1016/j.neucom.2017.09.054
  2. 절대 유사 임계값 기반 사례기반추론과 유전자 알고리즘을 활용한 시스템 트레이딩 vol.26, pp.3, 2017, https://doi.org/10.5859/kais.2017.26.3.63
  3. 딥러닝 모형의 복잡도에 관한 연구 vol.28, pp.6, 2017, https://doi.org/10.7465/jkdi.2017.28.6.1217
  4. 순환 신경망 기술을 이용한 코스피 200 지수에 대한 예측 모델 개발 및 성능 분석 연구 vol.22, pp.6, 2017, https://doi.org/10.9723/jksiis.2017.22.6.023
  5. 딥러닝을 활용한 실시간 주식거래에서의 매매 빈도 패턴과 예측 시점에 관한 연구: KOSDAQ 시장을 중심으로 vol.27, pp.3, 2018, https://doi.org/10.5859/kais.2018.27.3.123
  6. 딥러닝을 활용한 자산분배 시스템 vol.24, pp.1, 2017, https://doi.org/10.9723/jksiis.2019.24.1.023
  7. 금융 지표와 파라미터 최적화를 통한 로보어드바이저 전략 도출 사례 vol.19, pp.2, 2017, https://doi.org/10.9716/kits.2020.19.2.109
  8. 머신러닝을 이용한 탄성파 반사법 자료의 해저면 겹반사 제거 vol.23, pp.3, 2020, https://doi.org/10.7582/gge.2020.23.3.00168
  9. Artificial neural network algorithm comparison for exchange rate prediction vol.12, pp.3, 2017, https://doi.org/10.7236/ijibc.2020.12.3.125
  10. Extraction and Recognition Method of Basketball Players’ Dynamic Human Actions Based on Deep Learning vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/4437146
  11. Design and verification of service Hopping to promote the intent of continuous use of AI robo-advisor vol.22, pp.3, 2021, https://doi.org/10.9728/dcs.2021.22.3.463