• Title/Summary/Keyword: 디지털 영상획득 장치

Search Result 89, Processing Time 0.024 seconds

Development of Quality Assurance Program for the On-board Imager Isocenter Accuracy with Gantry Rotation (갠트리 회전에 의한 온-보드 영상장치 회전중심점의 정도관리 프로그램 개발)

  • Cheong, Kwang-Ho;Cho, Byung-Chul;Kang, Sei-Kwon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.212-223
    • /
    • 2006
  • Positional accuracy of the on-board imager (OBI) isocenter with gantry rotation was presented in this paper. Three different type of automatic evaluation methods of discrepancies between therapeutic and OBI isocenter using digital image processing techniques as well as a procedure stated in the customer acceptance procedure (CAP) were applied to check OBI isocenter migration trends. Two kinds of kV x-ray image set obtained at OBI source angle of $0^{\circ},\;90^{\circ},\;180^{\circ},\;270^{\circ}$ and every $10^{\circ}$ and raw projection data for cone-beam CT reconstruction were used for each evaluation method. Efficiencies of the methods were also estimated. If a user needs to obtain an isocenter variation map with full gantry rotation, a method taking OBI image for every $10^{\circ}$ and fitting with 5th order polynomial was appropriate. However for a mere quality assurance (QA) purpose of OBI isocenter accuracy, it was adequate to use only four OBI Images taken at the OBI source angle of $0^{\circ},\;90^{\circ},\;180^{\circ}\;and\;270^{\circ}$. Maximal discrepancy was 0.44 mm which was observed between the OBI source angle of $90^{\circ}\;and\;180^{\circ}$ OBI isocenter accuracy was maintained below 0.5 mm for a year. Proposed QA program may be helpful to Implement a reasonable routine QA of the OBI isocenter accuracy without great efforts.

  • PDF

Comparison of Center Error or X-ray Field and Light Field Size of Diagnostic Digital X-ray Unit according to the Hospital Grade (병원 등급에 따른 X선조사야와 광조사야 간의 면적 및 중심점 오차 비교)

  • Lee, Won-Jeong;Song, Gyu-Ri;Shin, Hyun-yi
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.245-252
    • /
    • 2020
  • The purpose of this study was intended to recognize the importance of quality control (QC) in order to reduce exposure and improve image quality by comparing the center-point (CP) of according to hospital grade and the difference between X-ray field (XF) and light field (LF) in diagnostic digital X-ray devices. XF and LF size, CP were measured in 12 digital X-ray devices at 10 hospitals located in 00 metropolitan cities. Phantom was made in different width respectively, using 0.8 mm wire after attaching to the standardized graph paper on transparent plastic plate and marked as cross wire in the center of the phantom. After placing the phantom on the table of the digital X-ray device, the images were obtained by shooting it vertically each field of survey. All images were acquired under the same conditions of exposure at distance of 100cm between the focus-detector. XF and LF size, CP error were measured using the picture archiving communication system. data were expressed as mean with standard error and then analyzed using SPSS ver. 22.0. The difference in field between the XF and LF size was the smallest in clinic, followed by university hospitals, hospitals and general hospitals. Based on the university hospitals with the least CP error, there was a statistically significant difference in CP error between university hospitals and clinics (p=0.024). Group less than 36-month after QC had fewer statistical errors than 36-month group (0.26 vs. 0.88, p=0.036). The difference between the XF and LF size was the lowest in clinic and CP error was the lowest in university hospital. Moreover, hospitals with short period of time after QC have fewer CP error and it means that introduction of timely QC according to the QC items is essential.

A Deblurring Algorithm Combined with Edge Directional Color Demosaicing for Reducing Interpolation Artifacts (컬러 보간 에러 감소를 위한 에지 방향성 컬러 보간 방법과 결합된 디블러링 알고리즘)

  • Yoo, Du Sic;Song, Ki Sun;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.205-215
    • /
    • 2013
  • In digital imaging system, Bayer pattern is widely used and the observed image is degraded by optical blur during image acquisition process. Generally, demosaicing and deblurring process are separately performed in order to convert a blurred Bayer image to a high resolution color image. However, the demosaicing process often generates visible artifacts such as zipper effect and Moire artifacts when performing interpolation across edge direction in Bayer pattern image. These artifacts are emphasized by the deblurring process. In order to solve this problem, this paper proposes a deblurring algorithm combined with edge directional color demosaicing method. The proposed method is consisted of interpolation step and region classification step. Interpolation and deblurring are simultaneously performed according to horizontal and vertical directions, respectively during the interpolation step. In the region classification step, characteristics of local regions are determined at each pixel position and the directionally obtained values are region adaptively fused. Also, the proposed method uses blur model based on wave optics and deblurring filter is calculated by using estimated characteristics of local regions. The simulation results show that the proposed deblurring algorithm prevents the boosting of artifacts and outperforms conventional approaches in both objective and subjective terms.

Design and Performance Analysis of Common data link digital modem for surveillance UAVs (정찰용 무인기를 위한 공용데이터링크 모뎀 설계 및 성능 분석)

  • Jung, Sungjin;Kim, Younggil;Lee, Daehong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.162-168
    • /
    • 2018
  • The UAV(Unmanned Aerial Vehicle) system, including the drone of a variety of fields, which has become an issue and utilized in various fields, has begun to develop in military fields and is actively developed in the commercial field. In various types of UAV systems, which have been developed recently, the communication system that is responsible for the connection between the ground control unit and the UAVs is called the data link. Especially, common data link used in military UAVs is required stability of communication to transmit surveillance and reconnaissance intelligence information and UAV's status. In this paper, the requirement for a modem was defined to secure the communication stability of the common data link used in surveillance UAVs. And, the design of the data link modem to satisfy applicable specifications was proposed. The proposed modem design was verified through the performance measurement of the implemented systems.

Haptic Media Broadcasting (촉각방송)

  • Cha, Jong-Eun;Kim, Yeong-Mi;Seo, Yong-Won;Ryu, Je-Ha
    • Broadcasting and Media Magazine
    • /
    • v.11 no.4
    • /
    • pp.118-131
    • /
    • 2006
  • With rapid development in ultra fast communication and digital multimedia, the realistic broadcasting technology, that can stimulate five human senses beyond the conventional audio-visual service is emerging as a new generation broadcasting technology. In this paper, we introduce a haptic broadcasting system and related core system and component techniques by which we can 'touch and feel' objects in an audio-visual scene. The system is composed of haptic media acquisition and creation, contents authoring, in the haptic broadcasting, the haptic media can be 3-D geometry, dynamic properties, haptic surface properties, movement, tactile information to enable active touch and manipulation and passive movement following and tactile effects. In the proposed system, active haptic exploration and manipulation of a 3-D mesh, active haptic exploration of depth video, passive kinesthetic interaction, and passive tactile interaction can be provided as potential haptic interaction scenarios and a home shopping, a movie with tactile effects, and conducting education scenarios are produced to show the feasibility of the proposed system.

Physical Vapor Deposition공정 시, Substrate 온도에 따른 X-선 검출용 비정질 셀레늄의 성능평가

  • Kim, Dae-Guk;Gang, Jin-Ho;Kim, Jin-Seon;No, Seong-Jin;Jo, Gyu-Seok;Sin, Jeong-Uk;Nam, Sang-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.210.2-210.2
    • /
    • 2013
  • 현재 국내의 상용화된 디지털 방식 X-선 영상장치에서 간접변환방식은 대부분 CsI를 사용하고 있으며, X-선 흡수에 의해 전기적 신호를 발생시키는 직접변환방식은 Amorphous Selenium(a-Se)을 사용한다. a-Se은 진공 중에 녹는점이 낮아 증착시 substrate의 온도에 따라 민감한 변화를 보인다. 본 연구에서는 간접변환방식에 비해 높은 영상의 질을 획득할 수 있는 직접변환방식의 a-Se기반 X-선 검출기 제작 시 substrate에 인가된 온도에 따른 특성을 연구하여 최적화 된 substrate의 온도를 알고자 한다. 본 실험에서는 glass에 투명한 전극물질인 Indium Tin Oxide (ITO)가 electrode로 형성된 substrate를 사용하였으며 그 상단에 a-Se을 Physical Vapor Deposition (PVD)방식을 거쳐 X-선 검출기 샘플을 제작하였다. PVD 공정 시 네 개의 보트에 a-Se 시료를 각각 100g씩 총 400g을 넣고, $5{\times}10-5Torr$까지 진공도를 낮추었다. 보트의 온도는 $270^{\circ}C$에서 40분 $290^{\circ}C$에서 90분으로 온도를 인가하여 a-Se을 기화시켜 증착하였다. 증착 시 substrate 온도를 각각 $20^{\circ}C$, $40^{\circ}C$, $60^{\circ}C$, $70^{\circ}C$ 네 종류로 나누어 실험을 진행하였다. 끝으로 증착된 a-Se 상단에 Au를 PVD방식으로 electrode를 형성시켜 a-Se기반의 X-선 검출기 샘플 제작을 완료하였다. 제작된 a-Se기반의 X-선 검출기 샘플의 두께는 80에서 $85{\mu}m$로 온도에 따른 차이가 없었다. 이후에 전기적 특성을 평가하기위해 electrometer와 oscilloscope를 이용하여 Dark current와 Sensitivity를 측정하여 Signal to Noise Ratio(SNR)로 도출하였으며 Scanning Electron Microscope(SEM) 표면 uniformity를 관찰하였다. 또한 제작된 a-Se기반 X-선 검출기 샘플의 hole collection 성능을 확인하고자 mobility를 측정하였다. 측정결과 a-Se의 work function을 고려한 $10V/{\mu}m$기준에서 70kV, 100mA, 0.03sec의 조건의 X-선을 조사 하였을 때 Sensitivity는 세 종류의 검출기 샘플이 15nC/mR-cm2에서 18nC/mR-cm2으로 비슷한 양상을 나타내었지만, substrate온도가 $70^{\circ}C$때의 샘플은 10nC/mR-cm2이하로 저감됨을 알 수 있었다. 그리고 substrate온도 $60^{\circ}C$에서 제작된 검출기 샘플의 전기적 특성이 SNR로 환산 시, 15.812로 가장 우수한 전기적 특성을 나타내어 최적화 된 온도임을 알 수 있었다. SEM촬영 시 온도상승에 따라 표면 uniformity가 우수하였으며, Mobility lifetime에서는 $60^{\circ}C$에서 제작된 검출기 샘플이 deep trap 수치가 높아 hole이 $0.04584cm2/V{\cdot}sec$$0.00174cm2/V{\cdot}sec$의 electron보다 26.34배가량 빠른 것을 확인하였다. 본 연구를 통해 a-Se증착 시, substrate에 인가된 온도는 균일한 박막의 형성 및 표면구조에 영향을 미치며 온도가 증가할수록 안정적인 전기적 특성을 나타내지만 $70^{\circ}C$이상일 시, a-Se층의 결정화가 생겨 deep trap을 발생시켜 전기적 특성이 저하됨을 확인 할 수 있었다. 따라서 증착 시의 substrate의 온도 최적화는 a-Se기반 X-선 검출기의 안전성 및 성능향상을 위해 불가피한 요소가 된다고 사료된다.

  • PDF

Imaging Characteristics of Computed Radiography Systems (CR 시스템의 종류와 I.P 크기에 따른 정량적 영상특성평가)

  • Jung, Ji-Young;Park, Hye-Suk;Cho, Hyo-Min;Lee, Chang-Lae;Nam, So-Ra;Lee, Young-Jin;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.63-72
    • /
    • 2008
  • With recent advancement of the medical imaging systems and picture archiving and communication system (PACS), installation of digital radiography has been accelerated over past few years. Moreover, Computed Radiography (CR) which was well established for the foundation of digital x-ray imaging systems at low cost was widely used for clinical applications. This study analyzes imaging characteristics for two systems with different pixel sizes through the Modulation Transfer Function (MTF), Noise Power Spectrum (NPS) and Detective Quantum Efficiency (DQE). In addition, influence of radiation dose to the imaging characteristics was also measured by quantitative assessment. A standard beam quality RQA5 based on an international electro-technical commission (IEC) standard was used to perform the x-ray imaging studies. For the results, the spatial resolution based on MTF at 10% for Agfa CR system with I.P size of $8{\times}10$ inches and $14{\times}17$ inches was measured as 3.9 cycles/mm and 2.8 cycles/mm, respectively. The spatial resolution based on MTF at 10% for Fuji CR system with I.P size of $8{\times}10$ inches and $14{\times}17$ inches was measured as 3.4 cycles/mm and 3.2 cycles/mm, respectively. There was difference in the spatial resolution for $14{\times}17$ inches, although radiation dose does not effect to the MTF. The NPS of the Agfa CR system shows similar results for different pixel size between $100{\mu}m$ for $8{\times}10$ inch I.P and $150{\mu}m$ for $14{\times}17$ inch I.P. For both systems, the results show better NPS for increased radiation dose due to increasing number of photons. DQE of the Agfa CR system for $8{\times}10$ inch I.P and $14{\times}17$ inch I.P resulted in 11% and 8.8% at 1.5 cycles/mm, respectively. Both systems show that the higher level of radiation dose would lead to the worse DQE efficiency. Measuring DQE for multiple factors of imaging characteristics plays very important role in determining efficiency of equipment and reducing radiation dose for the patients. In conclusion, the results of this study could be used as a baseline to optimize imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE for different level of radiation dose.

  • PDF

Adequacy of Source to Image Receptor Distance with Chest Postero-Anterior Projection in Digital Radiology System (디지털방사선 환경에서 흉부 후-전 방향 검사 시 초점과 영상수용체간 거리의 적절성)

  • Joo, Young-Cheol;Lim, Cheong-Hwan;You, In-Gyu;Jung, Hong-Ryang;Lee, Sang-Ho
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.135-142
    • /
    • 2016
  • The purpose of this study is to evaluate propriety of using SID 180cm at Chest PA examination and to find effect of geometrical cause to the image. XGEO-GC80, INNOVISION-SH, CXDI-40EG detector and a chest phantom designed self-production was used for this study. Images were acquired at SID 180cm with changing the factor OID as 0, 75 and 83mm and were analyzed by Centricity Radiography RA1000 PACS system. Statistical program was used the SPSS (Version 22.0, SPSS, Chicago, IL, USA), p-value(under 0.05) was considered to be statistically significant. In OID 0 mm was enlarged about 2.7~3.5 mm than the actual degree of the HS, BS of phantom in all equipments. Compared with the calculated magnification has been expanded 1.6~2.8% when viewed. The OID 75 mm with OID 83 mm was extended from the CS and BS 6~8 mm range. Compared to the calculated values, the measured values are expanded from 6.1 to 7.9%. CS and BS according to the OID change showed a statistically significant difference (p<0.05) among each group, the post-analysis only OID 0 mm group appeared as an independent group, 75 mm and 83 mm are separated in the same group It was. But had no statistically significant difference could change depending on the OID (p>0.05), post-mortem analysis showed, both in the same group. Heart sizes appears larger than actual size 6~8 mm at chest PA examination which is enlarged 6.1~7.9% more than the actual theoretical value. We can find magnification of the image because of the increase of the OID due to technical limitations between cover of standing detector and the image plate. so we suggest to have occurred between them when considering the need to adjust the equipment installed by the SID to match the characteristics of the equipment.

VR media aesthetics due to the evolution of visual media (시각 미디어의 진화에 따른 VR 매체 미학)

  • Lee, Dong-Eun;Son, Chang-Min
    • Cartoon and Animation Studies
    • /
    • s.49
    • /
    • pp.633-649
    • /
    • 2017
  • The purpose of this study is to conceptualize the changing aspects of human freedom of observation and viewing as the visual media evolves from film to 3D stereoscopic film and VR. The purpose of this study is to conceptualize the aspect of freedom and viewing aspect from the viewpoint of genealogy. In addition, I will identify the media aesthetic characteristics of VR and identify the identity and ontology of VR. Media has evolved around the most artificial sense of human being. There is a third visual space called screen at the center of all the reproduction devices centering on visual media such as painting, film, television, and computer. In particular, movies, television, and video screens, which are media that reproduce moving images, pursue perfect fantasy and visual satisfaction while controlling the movement of the audience. A mobilized virtual gaze was secured on the assumption of the floating nature of the so-called viewers. The audience sees a cinematic illusion with a view while seated in a fixed seat in a floating posture. They accept passive, passive, and passively without a doubt the fantasy world beyond the screen. But with the advent of digital paradigm, the evolution of visual media creates a big change in the tradition of reproduction media. 3D stereoscopic film predicted the extinction of the fourth wall, the fourth wall. The audience is no longer sitting in a fixed seat and only staring at the front. The Z-axis appearance of the 3D stereoscopic image reorganizes the space of the story. The viewer's gaze also extends from 'front' to 'top, bottom, left, right' and even 'front and back'. It also transforms the passive audience into an active, interactive, and experiential subject by placing viewers between images. Going one step further, the visual media, which entered the VR era, give freedom to the body of the captive audience. VR secures the possibility of movement of visitors and simultaneously coexists with virtual space and physical space. Therefore, the audience of the VR contents acquires an integrated identity on the premise of participation and movement. It is not a so-called representation but a perfection of the aesthetic system by reconstructing the space of fantasy while inheriting the simulation tradition of the screen.