DOI QR코드

DOI QR Code

A Deblurring Algorithm Combined with Edge Directional Color Demosaicing for Reducing Interpolation Artifacts

컬러 보간 에러 감소를 위한 에지 방향성 컬러 보간 방법과 결합된 디블러링 알고리즘

  • Yoo, Du Sic (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Song, Ki Sun (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Kang, Moon Gi (Department of Electrical and Electronic Engineering, Yonsei University)
  • 유두식 (연세대학교 전기전자공학과) ;
  • 송기선 (연세대학교 전기전자공학과) ;
  • 강문기 (연세대학교 전기전자공학과)
  • Received : 2013.03.12
  • Published : 2013.07.25

Abstract

In digital imaging system, Bayer pattern is widely used and the observed image is degraded by optical blur during image acquisition process. Generally, demosaicing and deblurring process are separately performed in order to convert a blurred Bayer image to a high resolution color image. However, the demosaicing process often generates visible artifacts such as zipper effect and Moire artifacts when performing interpolation across edge direction in Bayer pattern image. These artifacts are emphasized by the deblurring process. In order to solve this problem, this paper proposes a deblurring algorithm combined with edge directional color demosaicing method. The proposed method is consisted of interpolation step and region classification step. Interpolation and deblurring are simultaneously performed according to horizontal and vertical directions, respectively during the interpolation step. In the region classification step, characteristics of local regions are determined at each pixel position and the directionally obtained values are region adaptively fused. Also, the proposed method uses blur model based on wave optics and deblurring filter is calculated by using estimated characteristics of local regions. The simulation results show that the proposed deblurring algorithm prevents the boosting of artifacts and outperforms conventional approaches in both objective and subjective terms.

디지털 이미징 장치는 일반적으로 베이어 패턴(Bayer pattern)을 사용하며, 영상 획득 과정에서 광학적 블러(blur)에 의해 영상의 품질이 손상된다. 블러된 베이어 영상에서 고해상도 컬러 영상을 얻기 위하여, 일반적으로 컬러 보간 방법과 디블러링 방법을 독립적으로 수행한다. 하지만, 베이어 샘플링에 의한 에지 정보가 불충분하여 에지를 가로지르는 방향으로 보간 하게 되고, 이에 따라 컬러 보간 과정에서 에러가 발생한다. 이러한 에러는 디블러링 과정에서 강조되어 영상의 품질을 하락시킨다. 따라서 본 논문은 컬러 보간 방법과 결합된 디블러링 알고리즘을 제안한다. 제안하는 방법은 크게 보간 단계와 영역 결정 단계로 나눌 수 있다. 보간 단계에서는 가정된 에지 방향에 따라 보간 및 디블러링 과정을 수행하고, 영역 결정 단계에서는 각 화소 위치에서 국부 영역의 특성을 추정하고, 보간 단계에서 구한 값을 영역 적응적으로 융합한다. 또한 본 논문에서는 디블러링 성능을 향상시키기 위하여 광학적 블러와 유사한 파동 광학에 근거한 블러 모델을 기반으로 하고, 추정한 국부 영역 특성을 반영하여 디블러링 필터를 추정한다. 실험 결과를 통해 제안하는 방법이 컬러 보간 에러가 확대되는 것을 방지함을 확인할 수 있으며, 기존 방법에 비해 수치적인 면과 시각적인 면에서 뛰어난 결과를 보임을 확인 할 수 있다.

Keywords

References

  1. B. E. Bayer, "Color imaging array," U.S. Patent 3 971 065, Jul. 1976.
  2. J. E. Adams and J. F. Hamilton, "Design of practical color filter array interpolation algorithm for digital cameras" Proc. of SPIE, Vol. 3028, pp. 117-125, Apr. 1997.
  3. S. C. Pei and I. K. Tam, "Effective color interpolation in ccd color filter arrays using signal correlation" IEEE Trans. Circuits and Systems for Video Technology, Vol. 13, No. 6, pp. 503-513, Jun. 2003. https://doi.org/10.1109/TCSVT.2003.813422
  4. W. Lu and Y. P. Tan, "Color filter array demosaicking: new method and performance measures" IEEE Trans. Image Processing, Vol. 12, No. 10, pp. 1194-1210, Oct. 2003. https://doi.org/10.1109/TIP.2003.816004
  5. 김창원, 유두식, 강문기, "잡음을 고려한 공간적응적 색상 보간", 대한전자공학회, 제47권 SP편 제2 호, pp. 86-94, 2010년 3월
  6. X. Wu and N. Zhang, "Primary-consistent soft decision color demosaicking for digital cameras (patent pending)" IEEE Trans. Image Processing, Vol. 13, No. 9, pp. 1263-1274, Sep. 2004. https://doi.org/10.1109/TIP.2004.832920
  7. K. Hirakawa and T. Parks, "Adaptive homogeneity-directed demosaicing algorithm" IEEE Trans. Image Processing, Vol. 14, No. 12, pp. 2167-2178, Dec. 2005. https://doi.org/10.1109/TIP.2005.857260
  8. L. Zhang and X. Wu, "Color demosaicking via directional linearminimum mean square-error estimation" IEEE Trans. Image Processing, Vol. 14, No. 12, pp. 2167-2178, Dec. 2005. https://doi.org/10.1109/TIP.2005.857260
  9. K. H. Chung and Y. H. Chan, "Color demosaicing using variance of clor differences" IEEE Trans. Image Processing, Vol. 15, No. 10, pp. 2944-2955, Oct. 2006. https://doi.org/10.1109/TIP.2006.877521
  10. C. Y. Tsai, and K. T. Song, "Heterogeneity-projection hard-decision color interpolation using spectral-spatial correlation" IEEE Trans. Image Processing, Vol. 16, No. 1, pp. 78-91, Jan. 2007. https://doi.org/10.1109/TIP.2006.884943
  11. P. Vivirito, S. Battiato, S. Curti, M. L. Cascia, and R. Pirrone, "Restoration of out-of-focus images based on circle of confusion estimation" Proc. of SPIE, Vol. 4790, pp. 408-416, Nov. 2002.
  12. S. Wu, W. Lin, L. Jiang, W. Xiong, L. Chen, and S. H. Ong, "An objective out-of-focus blur measurement" Proc. Fifth International Conference on Information, Communications and Signal Processing, pp. 334-338, 2005.
  13. M. Moghaddam, "A mathematical model to estimate out of focus blur" Proc. 5th International Symposium on Image and Signal Processing and Analysis ISPA 2007, pp. 278-281, 2007.
  14. R. Luo, H. Potlapalli, and D. Hislop, "Defocusing blur restoration in natural scene images for fractal analysis" Proc. IECON' 93. International Conference on Industrial Electorincs, Control, and Instrumentation, Vol. 3, pp. 1377-1381, 1993.
  15. T. Costello and W. Mikhael, "Optical system modeling for digital image restoration" Proc. 40th Midwest Symposium on Circuits and Systems, Vol. 2, pp. 937-940, 1997.
  16. I. Raveh, D. Mendlovic, Z. Zalevsky, and A. W. Lohmann, "Digital method for defocus corrections: experimental results" Optical Engineering, Vol. 38, No. 10, pp. 1620-1626, Oct. 1999. https://doi.org/10.1117/1.602215
  17. J. W. Goodman, "Introduction to Fourier Optics Third Edition" Roberts & Company, 2005.
  18. V. N. Mahajan, "Optical Imaging and Aberrations Part II Wave Diffraction Optics" SPIE, 2001.
  19. Q. Shan, J. Jia, and A. Agarwala, "High-quality motion deblurring from a single image" ACM Transations on Graphics (TOG), Vol. 27, No. 3, Aug. 2008.
  20. A. Savakis and H. Trussell, "On the accuracy of psf representation inimage restoration" IEEE Trans. Image Processing, Vol. 2, No. 2, pp. 252-259, Apr. 1993. https://doi.org/10.1109/83.217229
  21. B. R. Hunt, "The application of constrained least-squares estimation to image restoration by digital computer" IEEE Trans. Computers, Vol. C-22, No. 9, pp. 805-812, Sep. 1973. https://doi.org/10.1109/TC.1973.5009169

Cited by

  1. Multiple Shortfall Estimation Method for Image Resolution Enhancement vol.51, pp.3, 2014, https://doi.org/10.5573/ieie.2014.51.3.105
  2. Color Interpolation Algorithm for Pixel Resolution Modus of Image Sensor vol.51, pp.9, 2014, https://doi.org/10.5573/ieie.2014.51.9.129