• Title/Summary/Keyword: 동적 프로그램

Search Result 1,113, Processing Time 0.023 seconds

Implementation of A Monitoring System using Image Data and Environment Data (영상정보와 환경정보를 이용한 실내 공간 모니터링 시스템 구현)

  • Cha, Kyung-Ae;Kwon, Cha-Uk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The objective of this study is to design a system that automatically monitors the state of interior spaces like offices where lots of people are coming and going through image data and environment data, which includes temperature, humidity, and other conditions, and implement and test related application programs. In practice, there are lots of image data automatically obtained by unmanned equipments, such as certain types of CCTVs, for monitoring situation in usual interior spaces. This image data can be used as a more effective manner by establishing a system that recognizes situation in specific interior spaces based on the relationship between image and environment data. For instance, it is possible to perform unmanned on/off controls for various electronic equipments, such as air conditioners, lights, and other devices, through analyzing the data acquisited from environment sensors (temperature, humidity, and illumination) as dynamic states are not maintained for a specified period of time. For implementing these controls, this study analyzes environment data acquisited from temperature and humidity sensors and image data input from wireless cameras to recognize situation and that can be used to automatically control environment variables configured by users. Experiments were applied in a laboratory where unmanned controls were effectively performed as automatic on/off controls for the air conditioner and lights installed in the laboratory as certain motions were detected or undetected for a specified period of time.

Development and Assessment for Resilient Modulus Prediction Model of Railroad Trackbeds Based on Modulus Reduction Curve (탄성계수 감소곡선에 근거한 철도노반의 회복탄성계수 모델 개발 및 평가)

  • Park, Chul Soo;Hwang, Seon Keun;Choi, Chan Yong;Mok, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.71-79
    • /
    • 2009
  • This study is to develope the resilient modulus prediction model, which is the function of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered granite soil, and crushed-rock soil mixture. The model consists of the maximum Young's modulus and nonlinear values for higher strain, analogous to dynamic shear modulus. The maximum value is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea, was evaluated using a 3-D elastic multilayer computer program (GEOTRACK). The results were compared with measured elastic vertical displacement during the passages of freight and passenger trains at two locations, whose sub-ballasts were crushed stone and weathered granite soil, respectively. The calculated vertical displacements of the sub-ballasts are within the order of 0.6mm, and agree well with measured values. The prediction models are thus concluded to work properly in the preliminary investigation.

Analysis of Research Trends in Deep Learning-Based Video Captioning (딥러닝 기반 비디오 캡셔닝의 연구동향 분석)

  • Lyu Zhi;Eunju Lee;Youngsoo Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.13 no.1
    • /
    • pp.35-49
    • /
    • 2024
  • Video captioning technology, as a significant outcome of the integration between computer vision and natural language processing, has emerged as a key research direction in the field of artificial intelligence. This technology aims to achieve automatic understanding and language expression of video content, enabling computers to transform visual information in videos into textual form. This paper provides an initial analysis of the research trends in deep learning-based video captioning and categorizes them into four main groups: CNN-RNN-based Model, RNN-RNN-based Model, Multimodal-based Model, and Transformer-based Model, and explain the concept of each video captioning model. The features, pros and cons were discussed. This paper lists commonly used datasets and performance evaluation methods in the video captioning field. The dataset encompasses diverse domains and scenarios, offering extensive resources for the training and validation of video captioning models. The model performance evaluation method mentions major evaluation indicators and provides practical references for researchers to evaluate model performance from various angles. Finally, as future research tasks for video captioning, there are major challenges that need to be continuously improved, such as maintaining temporal consistency and accurate description of dynamic scenes, which increase the complexity in real-world applications, and new tasks that need to be studied are presented such as temporal relationship modeling and multimodal data integration.

Evaluation of Vertical Vibration Performance of Tridimensional Hybrid Isolation System for Traffic Loads (교통하중에 대한 3차원 하이브리드 면진시스템의 수직 진동성능 평가)

  • Yonghun Lee;Sang-Hyun Lee;Moo-Won Hur
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.70-81
    • /
    • 2024
  • In this study, Tridimensional Hybrid Isolation System(THIS) was proposed as a vibration isolator for traffic loads, combining vertical and horizontal isolation systems. Its efficacy in improving serviceability for vertical vibration was analytically evaluated. Firstly, for the analysis, the major vibration modes of the existing apartment were identified through eigenvalue analysis for the system and pulse response analysis for the bedroom slab using commercial structural analysis software. Subsequently, a 16-story model with horizontal, vertical and rotational degrees of freedom for each slab was numerically organized to represent the achieved modes. The dynamic analysis for the measured acceleration from an adjacent ground to high-speed railway was performed by state-space equations with the stiffness and damping ratio of THIS as variables. The result indicated that as the vertical period ratio increased, the threshold period ratio where the slab response started to be suppressed varied. Specifically, when the period ratio is greater than or equal to 5, the acceleration levels of all slabs decreased to approximately 70% or less compared to the non-isolated condition. On the other hand, it was ascertained that the influence of damping ratios on the response control of THIS is inconsequential in the analysis. Finally, the improvement in vertical vibration performance of THIS was evaluated according to design guidelines for floor vibration of AIJ, SCI and AISC. It was confirmed that, after the application of THIS, the residential performance criteria were met, whereas the non-isolated structure failed to satisfy them.

Study on Factors Affecting on Energy Dissipation Coefficient of Reinforced Concrete Wall with Deformation-Dominated Behavior (변형지배거동을 하는 철근콘크리트 벽체의 에너지소산계수에 영향을 미치는 변수에 관한 연구)

  • Suk-Hyeong Yoo;Dae-Young Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.38-46
    • /
    • 2024
  • In Korea, more than 60% of the population lives in apartment buildings with wall structures that exhibit brittle behavior during earthquakes. Therefore, in recent performance-based seismic design, the selection of the energy dissipation coefficient for reinforced concrete (RC) walls in nonlinear dynamic analysis is very important. Previous experimental studies have reported that the main factors affecting the energy dissipation capacity of RC walls are the axial force ratio, the spacing of transverse reinforcement of boundary element, and the aspect ratio. The Architectural Institute of Korea and the Korea Concrete Institute proposed a concentrated plastic hinge model and the energy dissipation coefficient for each RC member in the guideline 「Nonlinear Analysis Model for Performance-Based Seismic Design of Reinforced Concrete Building Structures, 2021.」 The proposed equation for the energy dissipation coefficient does not include the factors of axial force ratio and spacing of transverse reinforcement of boundary element. The aspect ratio is applied to the flexural plastic model, despite considering shear-dominated behavior. Therefore, it is necessary to examine the effect of the aspect ratio according to the analysis model. In this study, the influence of each factor on the energy dissipation coefficient was analyzed by comparing the results of existing experimental research, nonlinear analysis using the fiber element model of a nonlinear analysis program(Perform 3D), and the energy dissipation coefficient proposed in the guideline. As the axial force ratio increased, the energy dissipation coefficient decreased, and as the spacing of transverse reinforcement of boundary element decreased, the energy dissipation coefficient increased. Additionally, as the aspect ratio increased, the energy dissipation coefficient tended to increase, with the aspect ratio showing the greatest influence.

Long-term Combined Exercise has Effect on Regional Bone Mineral Density and Cardiovascular Disease Risk Factors of the Elderly with Osteoporosis (장기간의 복합운동이 골다공증 노인의 신체부위별 골밀도와 심혈관질환 위험요인에 미치는 영향)

  • Choi, Pil-Byung
    • 한국노년학
    • /
    • v.31 no.2
    • /
    • pp.355-369
    • /
    • 2011
  • The purpose of this study was to find the effects of long-term combined exercise on regional bone mineral density(BMD) and cardiovascular disease(CVD) risk factors in the elderly with osteoporosis(OP). For the purpose, the subjects of this study were separated by two groups with thirty-one elderly women, who the first group was combined exercise group(CEG, n=16) and second group was non exercise group(CON, n=15). The combined exercise program was made up of warm-up (10min), work-out (aerobic; 30~45min/HRR 40~60%, resistance; 1RM * 50-70%, 8-10 * 2set ~ 10-15 * 1set), and cool-down (10min). Exercise group of the inspection have been trained 5 times a week for 1years. The results : At first, the variables of regional BMD were significantly different to pelvis, spine, trunk and T-score in two groups. At second, the variables of CVD risk factors were significantly different to SBP and DBP as well as TC, TG, LDL-C and HDL-C in two groups. As results of these conclusion, this study have positively effect shown that CEG was superior to CON in regional BMD(pelvis, spine, trunk and T-score), blood pressure(SBP, DBP) and plasma lipids(TC, TG, and LDL-C). Especially, the long-term combined exercise was provides a striking overall health quality of life with improving BMD and reduced CVD risk factors in the elderly with OP. In the future, other researches should deal with specific measures that reduction in mortality due to chronic disease and improvement quality of life for the development of programs in multiple researches of osteoporosis and chronic diseases.

Koreanized Analysis System Development for Groundwater Flow Interpretation (지하수유동해석을 위한 한국형 분석시스템의 개발)

  • Choi, Yun-Yeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.3 s.10
    • /
    • pp.151-163
    • /
    • 2003
  • In this study, the algorithm of groundwater flow process was established for koreanized groundwater program development dealing with the geographic and geologic conditions of the aquifer have dynamic behaviour in groundwater flow system. All the input data settings of the 3-DFM model which is developed in this study are organized in Korean, and the model contains help function for each input data. Thus, it is designed to get detailed information about each input parameter when the mouse pointer is placed on the corresponding input parameter. This model also is designed to easily specify the geologic boundary condition for each stratum or initial head data in the work sheet. In addition, this model is designed to display boxes for input parameter writing for each analysis condition so that the setting for each parameter is not so complicated as existing MODFLOW is when steady and unsteady flow analysis are performed as well as the analysis for the characteristics of each stratum. Descriptions for input data are displayed on the right side of the window while the analysis results are displayed on the left side as well as the TXT file for this results is available to see. The model developed in this study is a numerical model using finite differential method, and the applicability of the model was examined by comparing and analyzing observed and simulated groundwater heads computed by the application of real recharge amount and the estimation of parameters. The 3-DFM model is applied in this study to Sehwa-ri, and Songdang-ri area, Jeju, Korea for analysis of groundwater flow system according to pumping, and obtained the results that the observed and computed groundwater head were almost in accordance with each other showing the range of 0.03 - 0.07 error percent. It is analyzed that the groundwater flow distributed evenly from Nopen-orum and Munseogi-orum to Wolang-bong, Yongnuni-orum, and Songja-bong through the computation of equipotentials and velocity vector using the analysis result of simulation which was performed before the pumping started in the study area. These analysis results show the accordance with MODFLOW's.

Sewer Decontamination Mechanism and Pipe Network Monitoring and Fault Diagnosis of Water Network System Based on System Analysis (시스템 해석에 기초한 하수관망 오염 매카니즘과 관망 모니터링 및 이상진단)

  • Kang, OnYu;Lee, SeungChul;Kim, MinJeong;Yu, SuMin;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.980-987
    • /
    • 2012
  • Nonpoint source pollution causes leaks and overtopping, depending on the state of the sewer network as well as aggravates the pollution load of the aqueous water system as it is introduced into the sewer by wash-off. According, the need for efficient sewer monitoring system which can manage the sewage flowrate, water quality, inflow/infiltration and overflow has increased for sewer maintenance and the prevention of environmental pollution. However, the sewer monitoring is not easy since the sewer network is built in underground with the complex nature of its structure and connections. Sewer decontamination mechanism as well as pipe network monitoring and fault diagnosis of water network system on system analysis proposed in this study. First, the pollution removal pattern and behavior of contaminants in the sewer pipe network is analyzed by using sewer process simulation program, stormwater & wastewater management model for expert (XP-SWMM). Second, the sewer network fault diagnosis was performed using the multivariate statistical monitoring to monitor water quality in the sewer and detect the sewer leakage and burst. Sewer decontamination mechanism analysis with static and dynamic state system results showed that loads of total nitrogen (TN) and total phosphorous (TP) during rainfall are greatly increased than non-rainfall, which will aggravate the pollution load of the water system. Accordingly, the sewer outflow in pipe network is analyzed due to the increased flow and inflow of pollutant concentration caused by rainfall. The proposed sewer network monitoring and fault diagnosis technique can be used effectively for the nonpoint source pollution management of the urban watershed as well as continuous monitoring system.

A Study on an Effect that Resources and Capabilities of Lifelong Educational Institutions have on Learning Performances (대학 평생교육기관의 자원과 역량이 학습성과에 미치는 영향에 관한 연구)

  • Jeong, Jin Tae;Kim, Joo Il
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.2 no.2
    • /
    • pp.120-136
    • /
    • 2010
  • As there has recently been a rapid increase in importance of lifelong study, the number of learners participating in lifelong educational programs is increasing geometrically and lifelong educational institutions turned out to be the best one where everyone wants to study. Hereupon, aimed at team leaders managing the whole nation lifelong institutions and teachers interacting briskly with learners, we tried to research and analyze main cause affecting performances of lifelong educational institutions of university in this study based on Resource Based View and Dynamic Capability Theory for continuous development of lifelong educational institutions and securement of the competition. The contents and results of this study run as follows First, We tried to investigate the relation between resources and performances of lifelong educational institutions of university as contents and results of this study. The results were analyzed that material resources like an easy accessibility, superiority of facilities and teachers' excellence of lifelong educational institutions have an beneficial influence. Second, We tried to understand a leading cause affecting Dynamic Capabilities of lifelong educational institutions. The analyzed results were that material and human resources like easy accessibility, superiority of facilities, superiorities of teachers and director's empowering readership as a superior and organizational culture(autonomy, interaction) affect Dynamic Capabilities. These results could be understood that lifelong educational institution characteristics of university are well reflected. Third, We tried to find that even though elements of Resource Based view are surely important, Dynamic Capabilities of the organization are more important for continuous development and growth of lifelong educational institutions. Upon investigation, we found that there were mediating effectiveness in relations between Absorptive Capability and Innovative Capability which are Dynamic Capabilities and performances. Like preceding, there wes also mediating effectiveness in relations between empowering and organizational culture(autonomy, interaction) of a superior. And to conclude, superiority of resources could contribute to developing lifelong educational institutions to some degree but considering features of lifelong educational markets rapidly changed, Dynamic Capabilities of organization are more important for continuous growth and expensive preferability.

  • PDF

An Analysis of Soil Pressure Gauge Result from KHC Test Road (시험도로 토압계 계측결과 분석)

  • In Byeong-Eock;Kim Ji-Won;Kim Kyong-Ha;Lee Kwang-Ho
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.129-141
    • /
    • 2006
  • The vertical soil pressure developed in the granular layer of asphalt pavement system is influenced by various factors, including the wheel load magnitude, the loading speed, and asphalt pavement temperature. This research observed the distribution of vertical soil pressure in pavement supporting layer by investigating measured data from soil pressure gage in the KHC Test Road. The existing specification of subbase and subgrade compaction was also evaluated with measured vertical pressure. The finite element analysis was conducted to verify the accuracy of results with measured data because it can maximize research capacity without significant field test. The test data was collected from A5, A7, A14, and A15 test sections at August, September, and November 2004 and August 2005. Those test sections and test data were selected because they had best quality. The size of influence area was evaluated and the vertical pressure variation was investigated with respect to load level, load speed, and pavement temperature. The lower speed, higher load level, and higher pavement temperature increased the vertical pressure and reduced the area of influence. The finite element result showed the similar trend of vertical pressure variation in comparison with measured data. The specification of compaction quality for subbase and subgrade is higher than the level of vertical pressure measured with truck load so that it should be lurker investigated.

  • PDF