DOI QR코드

DOI QR Code

Study on Factors Affecting on Energy Dissipation Coefficient of Reinforced Concrete Wall with Deformation-Dominated Behavior

변형지배거동을 하는 철근콘크리트 벽체의 에너지소산계수에 영향을 미치는 변수에 관한 연구

  • Suk-Hyeong Yoo ;
  • Dae-Young Kang (Department of Architectural Engineering, Gyeongsang National University)
  • 유석형 (경상국립대학교 건축공학부) ;
  • 강대영 (경상국립대학교 건축공학부)
  • Received : 2024.09.03
  • Accepted : 2024.09.30
  • Published : 2024.10.31

Abstract

In Korea, more than 60% of the population lives in apartment buildings with wall structures that exhibit brittle behavior during earthquakes. Therefore, in recent performance-based seismic design, the selection of the energy dissipation coefficient for reinforced concrete (RC) walls in nonlinear dynamic analysis is very important. Previous experimental studies have reported that the main factors affecting the energy dissipation capacity of RC walls are the axial force ratio, the spacing of transverse reinforcement of boundary element, and the aspect ratio. The Architectural Institute of Korea and the Korea Concrete Institute proposed a concentrated plastic hinge model and the energy dissipation coefficient for each RC member in the guideline 「Nonlinear Analysis Model for Performance-Based Seismic Design of Reinforced Concrete Building Structures, 2021.」 The proposed equation for the energy dissipation coefficient does not include the factors of axial force ratio and spacing of transverse reinforcement of boundary element. The aspect ratio is applied to the flexural plastic model, despite considering shear-dominated behavior. Therefore, it is necessary to examine the effect of the aspect ratio according to the analysis model. In this study, the influence of each factor on the energy dissipation coefficient was analyzed by comparing the results of existing experimental research, nonlinear analysis using the fiber element model of a nonlinear analysis program(Perform 3D), and the energy dissipation coefficient proposed in the guideline. As the axial force ratio increased, the energy dissipation coefficient decreased, and as the spacing of transverse reinforcement of boundary element decreased, the energy dissipation coefficient increased. Additionally, as the aspect ratio increased, the energy dissipation coefficient tended to increase, with the aspect ratio showing the greatest influence.

국내인구 60%이상이 거주하고 있는 벽식구조 아파트는 지진시 취성적 거동을 하게된다. 따라서 최근 성능기반 내진설계시 비선형 동적해석을 위한 철근콘크리트(RC)벽체의 에너지소산계수의 선택은 매우 중요하다. RC벽체의 에너지소산능력에 영향을 주는 주요변수로는 축력비, 단부횡보강근 간격 및 형상비인 것으로 기존실험연구에서 보고하였다. 대한건축학회 및 한국콘크리트학회에서는 「철근콘크리트 건축구조물의 성능기반 내진설계를 위한 비선형해석모델, 2021」을 통해 각 RC부재의 집중소성힌지모델 및 에너지소산계수를 제안하였다. 에너지소산계수 제안식에는 앞서 언급된 축력비 및 단부횡보강근의 변수는 포함하지 않고 있으며, 형상비의 경우 전단지배거동을 고려함에도 휨소성모델에 적용되므로 해석모델에 따른 형상비의 효과를 검토할 필요가 있을 것으로 사료된다. 이에 기존실험연구, 비선형해석프로그램의 섬유요소모델을 활용한 비선형해석 및 지침서의 에너지소산계수 제안식을 비교함으로써 각 변수별 에너지소산계수에 미치는 영향을 분석하였다. 축력비가 커질수록 에너지소산계수는 작아졌으며 단부횡보강근의 간격이 줄어들수록 에너지소산계수는 증가하였다. 또한 형상비가 커질수록 에너지소산계수는 커지는 경향을 보였으며 형상비의 영향이 제일 큰 것으로 나타났다.

Keywords

Acknowledgement

이 연구는 2024년도 경상국립대학교발전기금재단 재원으로 수행되었으며, 이에 감사드립니다.

References

  1. Applied Technology Council. (1996), Seismic Evaluation and Retrofit of Concrete Buildings, volumes 1 and 2, Report No. ATC-40, Redwood City, CA.
  2. Architectural Institute of Korea., Korea Concrete Institute. (2021), Nonlinear analysis model for performance-based seismic design of reinforced concrete building structures (in Korean).
  3. Computer & Structures INC. (2011), Components and Elements for PERFORM-3D and PERFORM-COLLAPSE, ver 5, USA.
  4. Jiang, H. J., and Liu, L. E. (2011), Numerical analysis of RC shear walls under cyclic loading by Perform-3D, Advanced Materials Research, 250, 2253-2257.
  5. Korea Meteorological Administration. (2018), Earthquake Pohang (in Korean). https://www.kma.go.kr/w/download/earthquake_pohang.pdf
  6. Land & Housing Institute. (2015), Development of Non-linear Hysteretic Model for the Performance Based Design(1). LHI Report 2015-63 (in Korean).
  7. Lowes, L. N., Lehman, D. E., Baker, C., and Lundeen, C. P. (2016), Recommendations for modeling the nonlinear response of slender reinforced concrete walls using PERFORM-3D. In 2016 SEAOC Convention. Maui, USA.
  8. Mander, J. B., Priestley, M. J., and Park, R. (1988), Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804-1826.
  9. Park, H. G., and Eom, T. S. (2006), A simplified method for estimating the amount of energy dissipated by flexure-dominated reinforced concrete members for moderate cyclic deformations, Earthquake Spectra, 22(2), 459-490.
  10. Seo, S. Y., Moon, J. H., Yun, H. D., Oh, Y. H., and Kim, D. H. (2023), Limiting Capacity of Reinforced Concrete Ordinary Walls for Emulative Evaluation, Journal of the Korea Concrete Institute, 35(4), 443-453 (in Korean).
  11. Statistics Korea. (2024), 2023 Population and Housing Census (Register-based Census), Korea.
  12. Wallace, J. W., and Orakcal, K. (2002), ACI 318-99 provisions for seismic design of structural walls. Structural Journal, 99(4), 499-508.
  13. Williams, J., Doan, T., Laursen, P., and Behrouzi, A. A. (2020), Assessment of Modeling Strategies for Lightly Reinforced Concrete Shear Walls. 17th World Conference on Earthquake Engineering.
  14. Xu, G., and Li, A. (2020). Experimental and numerical studies on the lateral performance of concrete sandwich walls. The Structural Design of Tall and Special Buildings, 29(6), e1715.