• Title/Summary/Keyword: 독도 화산

Search Result 26, Processing Time 0.026 seconds

Eruption Cycles and Volcanic Form of the Dokdo Volcano, Korea (독도 화산의 분출윤회와 화산형태)

  • 황상구;전영권
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.527-536
    • /
    • 2003
  • The Dokdo volcano in the south-central part of the East Sea is classified into 8 rock units. The units and sequence suggest that the Dok Island forms a small stratovolcano constructed from at least 3 times eruption cycles above the sea level and proceeded with transformation of a few different eruption styles during each cycle. Reconstruction of the volcanic form, from the geologic structures and spatial lithofacies changes, suggests that the island is remnants of the southwestern caldera rim of the stratovolcano whose central part lies several hundred meters to the northeast. The subaqueous volcano shows abig guyot, which looks like a shield volcano, that represents gentle slope at 90-175 m deep and relatively steep one in 200∼2,000m, and 25∼30km wise base on sea floor. Therefore the total Dokdo volcano represents a multiple volcano that stratovolcano with small caldera overlies the big guyot.

Geological Structure and Depositional Environments in the Dok Island, East Sea (독도 주변해역의 지구조와 퇴적환경)

  • Huh Sik;Park Cha-Hong;Yoo Hai-Soo;Han Sang-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.145-150
    • /
    • 2005
  • A maximum of 3 km thickness of sediments were deposited above basement deformed by volcanic activities around the Dok Island. As the geological structure, the tension caused the basement-involved normal faults in the early stage of basin formation, whereas the sediment layers showed normal faults, volcanic domes and sills caused by volcanic activities. From the distribution of volcanics in order of age at the Ulleung Basin, volcanic activities were increased toward the northeastern direction (toward Dok Island). The study area is characterized by extensional crustal deformation before sediment deposition during the Early or Middle Miocene age, After the Late Miocene age, the basin was deformed by deep buried volcanics or subsidence of basin, in consequence, became complex geological structures.

  • PDF

Geological Structure and Depositional Environments in the Dok Island, East Sea (독도 주변해역의 지구조와 퇴적환경)

  • Huh, Sik;Park, Chan-Hong;Yoo, Hai-Soo;Han, Sang-Joon
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.3
    • /
    • pp.131-135
    • /
    • 2005
  • A maximum of 3 km thickness of sediments were deposited above basement deformed by volcanic activities around the Dok Island. As the geological structure, the tension caused the basement-involved normal faults in the early stage of basin formation, whereas the sediment layers showed normal faults, volcanic domes and sills caused by volcanic activities. From the distribution of volcanics in order of age at the Ulleung Basin, volcanic activities were increased toward the northeastern direction(toward Dok Island). The study area is characterized by extensional crustal deformation before sediment deposition during the Early or Middle Miocene age. After the Late Miocene age, the basin was deformed by deep buried volcanics or subsidence of basin, in consequence, became complex geological structures.

  • PDF

Eruptive History of the Ulleungdo-Dokdo Volcanic Group, the East Sea: a Multi-Scale Approach (동해 울릉도-독도 화산그룹 분화사 다중스케일 연구)

  • Kim, Gi-Bom;Lee, Jae-Hyuk;Ahn, Ho-Jun;Je, Yoon-Hee
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.140-150
    • /
    • 2022
  • This paper focuses on introducing the concept of the multi-scale study on the Ulleungdo-Dokdo Volcanic Group in the East Sea and recent new findings from it. Multi-channel seismic reflection data reveals that the major volcanic activities of the Ulleungdo-Dokdo Volcanic Group took place between 5 and 2.5 Ma, which were propagated from Isabu Tablemount on the eastern end to the Ulleung Island on the western end. The terrestrial Ulleung Island was built via 5 stages, which eventually formed a 3 km-wide caldera, named Nari Caldera, and a volcanic dome, named Albong, within the caldera. The Albong and the unit N-1, the earliest phreatomagmatic explosive phase of the Albong volcano, were generated from a new magma injected into the existing phonolitic body. The generally trachyandesitic bulk rock composition of the pumice in unit N-1 and Albong is attributed to the contamination of the new magma by mafic cumulates at the base of the existing phonolitic chamber. The lines of evidence of a new magma injection point toward that Ulleung Island is an active volcano with a live subvolcanic magma plumbing system.

High-resolution Echo Facies Analysis of Sedimentary Deposits around Dok-Island Volcanoes (독도 화산군 주변 퇴적층의 고해상 탄성파상 분석)

  • Lee, Yong-Kuk;Han, Sang-Joon;Yoon, Seok-Hoon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.103-113
    • /
    • 2001
  • This study presents Quaternary sedimentation pattern around Dok-Island volcanoes (Dok Island and Dok Seamount), based on analysis of high-resolution (chirp) echo characters. Echo facies If, showing sharp, continuous bottom echo without subbottom reflectors, is recorded mainly from the flat tops of the volcanoes. This facies indicates sands and gravels (re) deposited by shallow marine processes. Echo facies IIA in the basin floor and basal slopes of the volcanoes and Oki Bank is characterized by semi-prolonged bottom and several parallel subbottom echoes. This facies reflects hemipelagic settling with intermittent influences of turbidity currents in the slope areas. Echo facies IIC is recorded from acoustically-transparent debrite masses on the basal slopes of the volcanoes and Oki Bank. Echo facies IIIA is characterized by irregular hyperbolic echoes in the slope areas of the volcanoes. It suggests hard rock basement or irregular volcanic edifices. Echo facies IIIC shows regularly-overlapping hyperbolic bottom echoes. It is interpreted to represent rock-fall deposits (talus) accumulated in the mid-slope area. Echo characters and topography suggest that the tops of Dok-Island volcanoes were flattened and lowered by shallow-marine erosional processes. The eroded sediments were transported to and deposited in the base of slope and basin plain mainly by debris flows and turbidity currents along submarine canyons and valleys.

  • PDF

Geophysical study on the summit of the Dokdo volcano (독도화산체 정상부에 대한 지구물리학적 조사 연구)

  • Kim, Chang-Hwan;Jeong, Eui-Young;Park, Chan-Hong;Jou, Hyeong-Tae;Lee, Seung-Hoon;Kim, Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.207-212
    • /
    • 2008
  • Bathymetry, side scan sonar, and magnetic survey data for the summit area of Dokdo obtained by Korea Ocean Research & Development Institute in 1999, 2004, and 2007 were analyzed to investigate the geophysical characteristics of the summit. Bathymetry and topographic data for the summit of Dokdo show uneven seabed and irregular undulations from costal line to -90 m in water depth, indicating the effects of partial erosions and taluses. The stepped slope in the bathymetry is supposed to be a coastal terrace suggesting repetition of transgressions and regressions in the Quaternary. The bathymetry and the side scan sonar data show a small crater, assumed to be formed by post volcanisms, at depth of $-100\;{\sim}\;-120\;m$ in the northeastern and the northwestern parts of the survey area. Except some areas with shallow sand sedimentary deposits, there are rocky seafloor and lack of sediments in the side scan sonar images of the survey area, dominantly. The analytic signal of the magnetic anomaly coincides with other geophysical results regarding to the location of the residual crater. The geophysical constraints of the summit of Dokdo propose that the islets and the rocky seabed elongated northeastward and northwestward from the islets might be the southern crater of the Dokdo volcano.

  • PDF

Ages and Evolutions of the Volcanic Rocks from Ulleung-do and Dok-do (울릉도와 독도 화산암의 생성연대 및 진화사)

  • Song Yong-Sun;Park Maeng-Eon;Park Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.2 s.44
    • /
    • pp.72-80
    • /
    • 2006
  • We report new K-Ar ages of volcanic rocks from Ulleung-do and Dok-do islands located at the middle of the Korea Sea; $3.67{\pm}0.40\sim1.89{\pm}0.29$ Ma for the Dok-do and $8.07{\pm}0.39\sim0.51{\pm}0.07$ Ma for the Ulleung-do. Such ages reveal that igneous activities of both Dok-do and Ulleung-do extend longer than previously reported. It is likely that igneous activity of Ulleung-do started as early as $8.07{\pm}0.39$ Ma which is much older than age known currently, and latest eruption and intrusion of trachyte of Dok-do lasted until $1.89{\pm}0.29$ Ma, which overlaps previously reported igneous activity of Ulleung-do. However, it seems that the main volcano-building stage of Ulleung-do started after 2.7 Ma and igneous activities of Dok-do were finished mostly before then, which suggests that Dok-do was farmed before Ulleung-do in the respect of main stages of volcano-building. Such explanation agrees well with the hypothesis that southeastern seamounts, Dok-do and Ulleung-do were sequentially generated by relatively fixed hotspot.

Mechanical Properties of Rocks in Dokdo (독도 암석의 역학적 특성에 관한 연구)

  • Park, Chan;Jung, Yong-Bok;Song, Won-Kyong;SunWoo, Choon;Kim, Bok-Chul;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.69-79
    • /
    • 2008
  • Dokdo is a volcano edifice originating from an oceanic island that was formed around 3 million to 2.2 million years ago, and it consists of Dongdo(eastern island) and Seodo(western island). Even though Dokdo is a small volcanic island, Dokdo has infinite potential value and significant economic, social, scientific, and technical aspects due to its resources, ecological and territorial value. In addition, it is of national interest with regards to the dispute with Japan over the dominium of Dokdo. A need to evaluate the ground stability of Dokdo, especially in Dongdo, has been seriously raised recently due to the various cracks caused by the progressive weathering and corrosion. This study dealt with the geology and geological layers of Dokdo and identified the status of ground cracks as the previous research to evaluate the ground stability of zones of concern in Dongdo. Also, this study analyzed the relationships between physical and mechanical properties with rock types. The results showed that the values of rock properties in Dokdo are lower contrary to the general rocks in Korea, and tuff was especially affected by the weathering and corrosion.