• 제목/요약/키워드: 도로영역 인식

검색결과 105건 처리시간 0.021초

LiDAR 데이터를 이용한 차량정보 추출에 관한 연구 (A Study on the extraction of vehicle information using LiDAR data)

  • 권승준
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2009년도 춘계학술대회 논문집
    • /
    • pp.350-353
    • /
    • 2009
  • 본 논문에서는 국토모니터링 기술의 한 부분으로서 도로 지역에 대한 효율적인 실시간 교통모니터링을 위해 도로상의 차량 정보를 LiDAR 데이터로부터 취득하는 과정을 실험하였다. 도로영역의 데이터를 추출하기 위해서 좌표 변환된 수치지도와 LiDAR 데이터를 이용하였고, 국지적 임계치 필터링을 사용하여 추출된 도로영역의 데이터를 차량과 도로의 자료로 분리시키는 작업을 수행하였으며, 추출된 차량의 포인트들을 이용하여 차량을 표현할 수 있는 기본 속성값을 추출하였다. 마지막으로, 분리된 차량의 포인트에 대해서 MDC(Minimum Distance Classification) 클러스터링를 이용하여 차량의 종류를 분류하였다. 결과적으로 본 연구를 통하여 차량인식과 차량의 종류에 대한 분류를 수행할 수 있음을 확인하였다.

  • PDF

도로 자동인식을 위한 연산자 및 알고리즘 개발 (Developing Operator and Algorithm for Road Automated Recognition)

  • 임인섭;최석근;이재기
    • 대한공간정보학회지
    • /
    • 제10권3호
    • /
    • pp.41-51
    • /
    • 2002
  • 최근 들어, 수치항공영상을 이용하여 지형정보를 추출하고자 하는 많은 연구가 수행되어 왔다. 그러나 수치항공영상에서 기존의 경계선 검출기법을 이용하여 대상물을 자동으로 인식하고 추출하는 것은 매우 어려우므로, 수동이나 반자동의 형태로 이루어졌다. 따라서, 본 연구에서는 먼저 도로 영역을 자동으로 추출하기 위해 밝기값이 분할된 항공영상의 의미론적인 정보의 대역을 중첩한 영상을 이용하여 인식에 장애가 되는 요소를 제거한 다음, 도로정보를 자동으로 인식하고 추출할 수 있는 알고리즘을 개발하여 시스템개발시 적용하고자 한다. 이를 위해 먼저, 횡단보도 대역 영상으로부터 횡단보도영역을 자동으로 인식하기 위한 '템플릿 회전이동 연산자'와 인식된 횡단보도의 장변의 길이를 바탕으로 도로영역을 추적할 수 있는 '윈도우 법선 탐색 추적 알고리즘'을 개발하므로써 항공영상으로부터 직접 도로정보를 자동으로 추출할 수 있는 기법을 제시하고자 한다.

  • PDF

최적의 세선화 영역 차선인식 알고리즘 및 이탈경보시스템 (Optimization Thinning area Lane Detection and LDWS Algorithm)

  • 이준섭;정차근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.284-285
    • /
    • 2008
  • 논문에서는 비전센서로 전방도로영상을 획득하여 차선인식과 정을 거쳐 자율주행에 필요한 도로정보를 추출하고 사고를 방지할 수 있게 경보음을 발생하는 기법을 제시한다. 비전을 통해 입력되는 정보중 직선도로나 곡선도로의 외곽에 해당하는 백색 선만을 인식하는 알고리즘이 필요하다. 이러한 알고리즘을 수행하기 위해서는 많은 계산량이 필요로 하기 때문에 실시간의 자율주행 시스템에의 적용은 제약이 수반된다. 본 논문은 이와 같은 문제를 해결하기 위해 세선화 영역 및 차선이탈경보시스템(LDWS) 알고리즘을 제시한다.

  • PDF

카메라 영상을 통한 실시간 차선·차간 인식에 관한 연구 (Lane and Vehicle Distance Detection Using Camera Image)

  • 김유신;정대룡;송성근;송태홍
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.318-321
    • /
    • 2011
  • 도로 주행 시 운전을 보조하고 안전 운전을 지원하기 위한 기술인 도로상황인지 시스템에 있어 효율적인 차선 차간 검출 기법은 위의 핵심적인 기술이다. 실시간으로 수집되는 도로 상황 영상 데이터 분석에 대한 처리 시간을 단축하기 위하여 각각의 영상 프레임에 대해 관심 영역을 설정한 후 허프 변환을 적용하였다. 본 논문은 카메라로 수집되는 도로 상황 영상에 관심 영역 설정을 통한 실시간 차선 차간 인식에 관한 연구로서, 차선과 차간 인식을 위한 효율적인 알고리즘을 제안한다.

도로 동영상에서 차량번호판 인식 (Recognition of License Plate of Car in Vehicle Motion Images)

  • 이향정;이효종;이훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 춘계학술발표논문집 (상)
    • /
    • pp.775-778
    • /
    • 2002
  • 본 논문에서는 도로를 주행하는 차량영상으로부터 번호판의 인식에 대한 연구이다. 차량을 검출하기 위해 두 프레임의 차를 이용하여 도로상에서 차량을 분리하였고, 번호판 영역을 추출하기 위해 명암도 변화의 파형 곡선 결과에 임계값을 적용하여 번호판을 추출하였다. 번호판 영역 검출은 96.05%의 검출결과를 얻었으며, 차량의 번호판 문자인식은 신경망을 통하여 학습 시켰 그 성능은 잭나이프 기법을 통해 측정하였다. 학습데이터에 대해서는 99.85 비학습데이터에 대해서는 88.15%의 인식율을 보였다.

  • PDF

비전 센서를 이용한 차선 및 장애를 인식 시스템 개발 (Development of Lane and Obstacle Detection System Using Vision Sensor)

  • 안준식;오태석;김일환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.276-277
    • /
    • 2008
  • 본 논문에서는 효율성 높은 차선 인식 및 장애물 검출을 위한 알고리즘을 제안한다. 입력된 영상을 배경영상과 도로 영상으로 나눈 후 도로영역에서 Hough 변환을 이용하여 차선을 검출 하도록 한다. 또한 자동차의 그림자와 같은 특징 정보를 활용하여 주행 중인 차량을 검출한다. 영상의 잡음을 최소화하기 위한 알고리즘을 적용하여 파선 인식률을 높일 수 있는 방법을 연구한다.

  • PDF

컬러 세그멘테이션 및 정규화 템플릿 매칭의 계층적 적용에 의한 속도 표지판 인식 (Speed Sign Recognition by Using Hierarchical Application of Color Segmentation and Normalized Template Matching)

  • 이강호;이규원
    • 정보처리학회논문지B
    • /
    • 제16B권4호
    • /
    • pp.257-262
    • /
    • 2009
  • 본 논문에서는 실제 도로환경의 속도 표지판 영역 추출 및 인식 방법을 제안한다. 화소의 색상정보를 이용하여 속도 표지판 영역을 추출하고 추출된 속도 표지판 영역 안에서 숫자 영역만 다시 추출한다. 표지판의 경사여부를 판단하여 시계방향, 반시계방향으로 각각 표지판을 회전시켜 기울기를 보정한 후 인식을 행함으로써 인식률을 제고한다. 도로환경의 동영상을 대상으로 인식을 행한 결과 일반적인 속도표지판 뿐 아니라 기울어진 환경에서도 매우 강건한 인식 결과를 보인다.

Fast R-CNN을 이용한 객체 인식 기반의 도로 노면 파손 탐지 기법 (Road Surface Damage Detection based on Object Recognition using Fast R-CNN)

  • 심승보;전찬준;류승기
    • 한국ITS학회 논문지
    • /
    • 제18권2호
    • /
    • pp.104-113
    • /
    • 2019
  • 도로 관리 주체는 도로 파손을 보수하기 위해 적지 않은 비용을 투입한다. 이러한 파손은 자연 요인과 노후화로 인하여 필연적으로 발생을 하는데, 효율적인 보수를 위한 유지보수 기술이 필요하다. 이런 수요에 대응하기 위해 여러 가지 기술들이 개발되고 적용되고 있지만, 최근 들어서는 차량용 블랙박스 형태로 수집한 영상 정보를 바탕으로 도로 노면 파손 유지 보수기술이 개발되고 있다. 이 파손 영역을 추출하는 방법에는 여러 가지가 있지만, 본 논문에서는 최근 활발히 연구되고 있는 심층 신경망 구조의 영상인식 기술에 대해 논하고자 한다. 특히 영역 기반의 합성곱 알고리즘을 이용하여 영상 내에서 도로 파손 유무와 그 영역을 추정할 수 있는 새로운 심층 신경망을 소개한다. 이를 개발하기 위해 실제 주행을 통해서 600여장의 영상 데이터를 수집하였고, 이를 활용하여 학습을 수행하였다. 그 결과 기존 모델과 성능을 비교하여 10.67% 향상된 신경망을 개발하였다.

카메라 영상의 실시간 분석에 의한 차선 및 차간 인식 (Road Lane and Vehicle Distance Recognition using Real-time Analysis of Camera Images)

  • 강문설;김유신
    • 한국정보통신학회논문지
    • /
    • 제16권12호
    • /
    • pp.2665-2674
    • /
    • 2012
  • 본 논문에서는 실시간의 도로 환경에서 위험상황을 감지하고 안전 운전을 돕는 실시간 차선 및 차간 인식 방법을 제안한다. 먼저 전방주시 카메라를 활용하여 촬영한 도로영상으로부터 도로와 차량에 해당하는 관심 영역을 추출한다. 관심 영역에 대한 허프 변환을 통하여 직선 성분을 검출하고 확률 계산을 통하여 차선을 확정하여 필터링을 실시한다. 그리고 관심 영역에서 전방 차량의 그림자 임계값 분석을 통해 전방 차량 객체를 추출하고 전방 차량과의 거리를 계산한다. 제안한 차선 및 차간 인식 기술을 실제 도로상황에 적용하여 실험한 결과 95% 이상의 인식률을 나타내어 안전 운전에 대응할 수 있는 것으로 입증되었다.

차선 인식을 위한 적응적 도로 관심영역 결정 알고리즘 (An Adaptive Road ROI Determination Algorithm for Lane Detection)

  • 이찬호;정대균
    • 전자공학회논문지
    • /
    • 제51권1호
    • /
    • pp.116-125
    • /
    • 2014
  • 운전자 보조 시스템에서 도로 상태 정보는 안전한 운전을 위한 중요한 정보를 제공한다. 자동차에서의 입력 영상은 일반적으로 불필요한 영역도 포함하므로 도로 상태를 파악을 위한 관심영역(ROI)을 결정하고 나머지 영역을 제거한 뒤 관심영역만 남겨 두면 연산 시간을 줄일 수 있다. 본 논문에서는 도로를 나타내는 특징적인 선분과 이로부터 얻어지는 소멸점을 이용하여 도로 영역을 찾는 영상기반의 도로 관심영역 결정 알고리즘을 제안한다. 선분들은 Canny 가장자리 탐지법과 허프 변환을 이용하여 찾고 소멸점은 칼만 필터를 이용하여 추적함으로써 잡음의 영향에 의한 오동작을 방지한다. 초기화 과정을 거치면 도로 관심영역을 매 프레임마다 정확히 결정할 수 있다. 제안한 방식은 C++와 OpenCV 라이브러리를 이용하여 SW로 구현하였으며 다양한 블랙박스 영상으로부터 도로 관심영역을 얻는데 성공하였다. 실험 결과 제안한 알고리즘은 잡음에 강하다는 것을 확인하였다.