DOI QR코드

DOI QR Code

An Adaptive Road ROI Determination Algorithm for Lane Detection

차선 인식을 위한 적응적 도로 관심영역 결정 알고리즘

  • Lee, Chanho (School of Electronic Engr., Soongsil University) ;
  • Ding, Dajun (School of Electronic Engr., Soongsil University)
  • 이찬호 (숭실대학교 정보통신전자공학부) ;
  • 정대균 (숭실대학교 정보통신전자공학부)
  • Received : 2013.08.04
  • Published : 2014.01.25

Abstract

Road conditions can provide important information for driving safety in driving assistance systems. The input images usually include unnecessary information and they need to be analyzed only in a region of interest (ROI) to reduce the amount of computation. In this paper, a vision-based road ROI determination algorithm is proposed to detect the road region using the positional information of a vanishing point and line segments. The line segments are detected using Canny's edge detection and Hough transform. The vanishing point is traced by a Kalman filter to reduce the false detection due to noises. The road ROI can be determined automatically and adaptively in every frame after initialization. The proposed method is implemented using C++ and the OpenCV library, and the road ROIs are obtained from various video images of black boxes. The results show that the proposed algorithm is robust.

운전자 보조 시스템에서 도로 상태 정보는 안전한 운전을 위한 중요한 정보를 제공한다. 자동차에서의 입력 영상은 일반적으로 불필요한 영역도 포함하므로 도로 상태를 파악을 위한 관심영역(ROI)을 결정하고 나머지 영역을 제거한 뒤 관심영역만 남겨 두면 연산 시간을 줄일 수 있다. 본 논문에서는 도로를 나타내는 특징적인 선분과 이로부터 얻어지는 소멸점을 이용하여 도로 영역을 찾는 영상기반의 도로 관심영역 결정 알고리즘을 제안한다. 선분들은 Canny 가장자리 탐지법과 허프 변환을 이용하여 찾고 소멸점은 칼만 필터를 이용하여 추적함으로써 잡음의 영향에 의한 오동작을 방지한다. 초기화 과정을 거치면 도로 관심영역을 매 프레임마다 정확히 결정할 수 있다. 제안한 방식은 C++와 OpenCV 라이브러리를 이용하여 SW로 구현하였으며 다양한 블랙박스 영상으로부터 도로 관심영역을 얻는데 성공하였다. 실험 결과 제안한 알고리즘은 잡음에 강하다는 것을 확인하였다.

Keywords

References

  1. J. C. McCall, and M. M. Trivedi, "Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation," IEEE Transactions on Intelligent Transportation System, Vol. 7(1), pp. 20-37, 2006.7. https://doi.org/10.1109/TITS.2006.869595
  2. J. B. Kim, "Detection of Visual Attended Regions in Road Images for Assisting Safety Driving," Journal of the IEEK, Vol. 49SC(1), pp. 94-102, Jan. 2012.
  3. Q. Lin, Y. Han, and H. Han, "Real-time lane departure detection based on extended edge-linking algorithm," Second IEEE International Conference Computer Research and Development, pp.725-730, Kuala Lumpur, Malaysia, May 2010.
  4. V. Gaikwad, L Lokhande, "An improved lane departure method for Advanced Driver Assistance System," IEEE Computing Communication and Applications (ICCCA), pp.1-5, Tamilnadu, India, Feb. 2012.
  5. X. Zhe, and L. Zhifeng, "A robust lane detection method in the different scenarios," International Conference on Mechatronics and Automation (ICMA), pp.1358-1363, Chengdu, China, Aug. 2012.
  6. C.-C. Wang. S.-S. Huang, L.-C. Fu and P.-Y. Hsiao, "Driver assistance system for lane detection and vehicle recognition with night vision," IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2005), pp.3530-3535, Alberta, Canada, Aug. 2005.
  7. B. Benligiray C. Topal and C. Akinlar, "Video-Based Lane Detection Using a Fast Vanishing Point Estimation Method," IEEE International Symposium on Multimedia (ISM), pp.348-351, Irvine, USA, Dec. 2012.
  8. H. Kong, J.-Y. Audibert, and J. Ponce, "Vanishing point detection for road detection," IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp.96-103, Miami, USA, June 2009.
  9. Q. Wu, W. Zhang, T. Chen, and B.V.K. Kumar, "Prior-based vanishing point estimation through global perspective structure matching," IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp.2110-2113, Dallas, USA, March 2010.
  10. H. Wang, and Q. Chen, "Real-time lane detection in various conditions and night cases," IEEE Intelligent Transportation Systems Conference (ITSC06), pp.1226-1231, Toronto, Canada, Sept. 2006.
  11. P. M. Daigavane, and P. R. Bajaj. "Road Lane Detection with Improved Canny Edges Using Ant Colony Optimization," 3rd International Conference on IEEE Emerging Trends in Engineering and Technology (ICETET2010), pp.76-80, 2010.
  12. J. Matas, "Robust Detection of Lines Using the Progressive Probabilistic Hough Transform," Computer Vision and Image Understanding, Vol. 78(1), pp. 119-137, Apr. 2000. https://doi.org/10.1006/cviu.1999.0831
  13. T. Suttorp, and T. Bucher, "Learning of Kalman filter parameters for lane detection," 2006 IEEE Intelligent Vehicles Symposium, pp. 552-557. 2006.

Cited by

  1. 차량검출 GMM 2.0을 적용한 도로 위의 차량 검출 시스템 구축 vol.40, pp.11, 2014, https://doi.org/10.7840/kics.2015.40.11.2291
  2. 컴퓨터 비전 기반 UAV 영상의 도로표면 결함탐지 방안 vol.35, pp.6, 2014, https://doi.org/10.7848/ksgpc.2017.35.6.599