Loading [MathJax]/jax/output/CommonHTML/jax.js
  • Title/Summary/Keyword: 데이터 처리량

Search Result 2,609, Processing Time 0.031 seconds

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.

Dynamic Virtual Ontology using Tags with Semantic Relationship on Social-web to Support Effective Search (효율적 자원 탐색을 위한 소셜 웹 태그들을 이용한 동적 가상 온톨로지 생성 연구)

  • Lee, Hyun Jung;Sohn, Mye
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.19-33
    • /
    • 2013
  • In this research, a proposed Dynamic Virtual Ontology using Tags (DyVOT) supports dynamic search of resources depending on user's requirements using tags from social web driven resources. It is general that the tags are defined by annotations of a series of described words by social users who usually tags social information resources such as web-page, images, u-tube, videos, etc. Therefore, tags are characterized and mirrored by information resources. Therefore, it is possible for tags as meta-data to match into some resources. Consequently, we can extract semantic relationships between tags owing to the dependency of relationships between tags as representatives of resources. However, to do this, there is limitation because there are allophonic synonym and homonym among tags that are usually marked by a series of words. Thus, research related to folksonomies using tags have been applied to classification of words by semantic-based allophonic synonym. In addition, some research are focusing on clustering and/or classification of resources by semantic-based relationships among tags. In spite of, there also is limitation of these research because these are focusing on semantic-based hyper/hypo relationships or clustering among tags without consideration of conceptual associative relationships between classified or clustered groups. It makes difficulty to effective searching resources depending on user requirements. In this research, the proposed DyVOT uses tags and constructs ontologyfor effective search. We assumed that tags are extracted from user requirements, which are used to construct multi sub-ontology as combinations of tags that are composed of a part of the tags or all. In addition, the proposed DyVOT constructs ontology which is based on hierarchical and associative relationships among tags for effective search of a solution. The ontology is composed of static- and dynamic-ontology. The static-ontology defines semantic-based hierarchical hyper/hypo relationships among tags as in (http://semanticcloud.sandra-siegel.de/) with a tree structure. From the static-ontology, the DyVOT extracts multi sub-ontology using multi sub-tag which are constructed by parts of tags. Finally, sub-ontology are constructed by hierarchy paths which contain the sub-tag. To create dynamic-ontology by the proposed DyVOT, it is necessary to define associative relationships among multi sub-ontology that are extracted from hierarchical relationships of static-ontology. The associative relationship is defined by shared resources between tags which are linked by multi sub-ontology. The association is measured by the degree of shared resources that are allocated into the tags of sub-ontology. If the value of association is larger than threshold value, then associative relationship among tags is newly created. The associative relationships are used to merge and construct new hierarchy the multi sub-ontology. To construct dynamic-ontology, it is essential to defined new class which is linked by two more sub-ontology, which is generated by merged tags which are highly associative by proving using shared resources. Thereby, the class is applied to generate new hierarchy with extracted multi sub-ontology to create a dynamic-ontology. The new class is settle down on the ontology. So, the newly created class needs to be belong to the dynamic-ontology. So, the class used to new hyper/hypo hierarchy relationship between the class and tags which are linked to multi sub-ontology. At last, DyVOT is developed by newly defined associative relationships which are extracted from hierarchical relationships among tags. Resources are matched into the DyVOT which narrows down search boundary and shrinks the search paths. Finally, we can create the DyVOT using the newly defined associative relationships. While static data catalog (Dean and Ghemawat, 2004; 2008) statically searches resources depending on user requirements, the proposed DyVOT dynamically searches resources using multi sub-ontology by parallel processing. In this light, the DyVOT supports improvement of correctness and agility of search and decreasing of search effort by reduction of search path.

Test Bed Studies with Highly Efficient Amine CO2 Solvent (KoSol-4) (고효율 습식 아민 CO2 흡수제(KoSol-4)를 적용한 Test bed 성능시험)

  • Lee, Ji Hyun;Kwak, No-Sang;Lee, In Young;Jang, Kyung Ryoung;Jang, Se Gyu;Lee, Kyung Ja;Han, Gwang Su;Oh, Dong-Hun;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.267-271
    • /
    • 2013
  • Test bed studies with highly efficient amine CO2 solvent (KoSol-4) developed by KEPCO research institute were performed. For the first time in Korea, evaluation of post-combustion CO2 capture technology to capture 2 ton CO2/day from a slipstream of the flue gas from a coal-fired power station was performed. Also the analysis of solvent regeneration energy was conducted to suggest the reliable performance data of the KoSol-4 solvent. For this purpose, we have tested 5 campaigns changing the operating conditions of the solvent flow rate and the stripper pressure. The overall results of these campaigns showed that the CO2 removal rate met the technical guideline (CO2 removal rate: 90%) suggested by IEA-GHG and that the regeneration energy of the KoSol-4 showed about 3.0~3.2 GJ/tCO2 which was, compared to that of the commercial solvent MEA (Monoethanolamine), about 25% reduction of regeneration energy. Based on these results, we could confirm the good performance of the KoSol-4 solvent and the CO2 capture process developed by KEPCO research institute. And also it was expected that the cost of CO2 avoided could be reduced drastically if the KoSol-4 is applied to the commercial scale CO2 capture plant.

The Study of Land Surface Change Detection Using Long-Term SPOT/VEGETATION (장기간 SPOT/VEGETATION 정규화 식생지수를 이용한 지면 변화 탐지 개선에 관한 연구)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, In-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.111-124
    • /
    • 2010
  • To monitor the environment of land surface change is considered as an important research field since those parameters are related with land use, climate change, meteorological study, agriculture modulation, surface energy balance, and surface environment system. For the change detection, many different methods have been presented for distributing more detailed information with various tools from ground based measurement to satellite multi-spectral sensor. Recently, using high resolution satellite data is considered the most efficient way to monitor extensive land environmental system especially for higher spatial and temporal resolution. In this study, we use two different spatial resolution satellites; the one is SPOT/VEGETATION with 1 km spatial resolution to detect coarse resolution of the area change and determine objective threshold. The other is Landsat satellite having high resolution to figure out detailed land environmental change. According to their spatial resolution, they show different observation characteristics such as repeat cycle, and the global coverage. By correlating two kinds of satellites, we can detect land surface change from mid resolution to high resolution. The K-mean clustering algorithm is applied to detect changed area with two different temporal images. When using solar spectral band, there are complicate surface reflectance scattering characteristics which make surface change detection difficult. That effect would be leading serious problems when interpreting surface characteristics. For example, in spite of constant their own surface reflectance value, it could be changed according to solar, and sensor relative observation location. To reduce those affects, in this study, long-term Normalized Difference Vegetation Index (NDVI) with solar spectral channels performed for atmospheric and bi-directional correction from SPOT/VEGETATION data are utilized to offer objective threshold value for detecting land surface change, since that NDVI has less sensitivity for solar geometry than solar channel. The surface change detection based on long-term NDVI shows improved results than when only using Landsat.

A Case Study: ICT and the Region-based Sharing Economy of a Start-up Social Enterprise (ICT 기반 지역 공유경제형 사회적 기업 사례 연구)

  • Roh, Taehyup
    • Information Systems Review
    • /
    • v.18 no.1
    • /
    • pp.157-175
    • /
    • 2016
  • Under the market economy of capitalism, several limitations reveal the inequity and redistribution problem of wealth, inefficiency of over-manufacturing and over-consumption, pollution of the natural environment, and the constraint of human liberty and dignity. The new challenge of symbiotic relationships that encourage individual corporations coincides with the need to practice social responsibility and share values to overcome these limitations. Social economy and the social enterprises that simultaneously pursue the making of corporate private profits and the realization of social values have been suggested and disseminated as alternative social value creators. Furthermore, the concept of a sharing economy, which refers to the sharing of things rather than owning them, is growing traction as a new paradigm of capitalism. However, these efforts of social enterprises have fallen short against the conflicts between private profit and social values. This study deals with the case of a start-up social corporation, "Purun Bike Sharing Inc.," which is based on a regional sharing economy business model about bike rental services that use Information and Communication Technology (ICT). This corporation pursues harmonic management to achieve a balance between private profit and social value. Its corporate mission is to achieve sharing, coexistence, and contribution for public welfare. This mission is a possible idea for use in the local community network as a core key for sustainable social enterprises. The model can also be an alternative approach to overcome the structural friction in the social corporation. This study considers the case of Purun Bike Sharing as a sustainable way to practice a sharing economy business model based on a regional cooperation network, which can be combined with social value, and to apply ICT to a sharing economy system. It also examines the definition and current state of social enterprises and the sharing economy, and the cases of the sharing economy business model for the review of prior research.

Noise-robust electrocardiogram R-peak detection with adaptive filter and variable threshold (적응형 필터와 가변 임계값을 적용하여 잡음에 강인한 심전도 R-피크 검출)

  • Rahman, MD Saifur;Choi, Chul-Hyung;Kim, Si-Kyung;Park, In-Deok;Kim, Young-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.126-134
    • /
    • 2017
  • There have been numerous studies on extracting the R-peak from electrocardiogram (ECG) signals. However, most of the detection methods are complicated to implement in a real-time portable electrocardiograph device and have the disadvantage of requiring a large amount of calculations. R-peak detection requires pre-processing and post-processing related to baseline drift and the removal of noise from the commercial power supply for ECG data. An adaptive filter technique is widely used for R-peak detection, but the R-peak value cannot be detected when the input is lower than a threshold value. Moreover, there is a problem in detecting the P-peak and T-peak values due to the derivation of an erroneous threshold value as a result of noise. We propose a robust R-peak detection algorithm with low complexity and simple computation to solve these problems. The proposed scheme removes the baseline drift in ECG signals using an adaptive filter to solve the problems involved in threshold extraction. We also propose a technique to extract the appropriate threshold value automatically using the minimum and maximum values of the filtered ECG signal. To detect the R-peak from the ECG signal, we propose a threshold neighborhood search technique. Through experiments, we confirmed the improvement of the R-peak detection accuracy of the proposed method and achieved a detection speed that is suitable for a mobile system by reducing the amount of calculation. The experimental results show that the heart rate detection accuracy and sensitivity were very high (about 100%).

A Study on the RFID's Application Environment and Application Measure for Security (RFID의 보안업무 적용환경과 적용방안에 관한 연구)

  • Chung, Tae-Hwang
    • Korean Security Journal
    • /
    • no.21
    • /
    • pp.155-175
    • /
    • 2009
  • RFID that provide automatic identification by reading a tag attached to material through radio frequency without direct touch has some specification, such as rapid identification, long distance identification and penetration, so it is being used for distribution, transportation and safety by using the frequency of 125KHz, 134KHz, 13.56MHz, 433.92MHz, 900MHz, and 2.45GHz. Also it is one of main part of Ubiquitous that means connecting to net-work any time and any place they want. RFID is expected to be new growth industry worldwide, so Korean government think it as prospective field and promote research project and exhibition business program to linked with industry effectively. RFID could be used for access control of person and vehicle according to section and for personal certify with password. RFID can provide more confident security than magnetic card, so it could be used to prevent forgery of register card, passport and the others. Active RFID could be used for protecting operation service using it's long distance date transmission by application with positioning system. And RFID's identification and tracking function can provide effective visitor management through visitor's register, personal identification, position check and can control visitor's movement in the secure area without their approval. Also RFID can make possible of the efficient management and prevention of loss of carrying equipments and others. RFID could be applied to copying machine to manager and control it's user, copying quantity and It could provide some function such as observation of copy content, access control of user. RFID tag adhered to small storage device prevent carrying out of item using the position tracking function and control carrying-in and carrying-out of material efficiently. magnetic card and smart card have been doing good job in identification and control of person, but RFID can do above functions. RFID is very useful device but we should consider the prevention of privacy during its application.

  • PDF

A Spatio-Temporal Clustering Technique for the Moving Object Path Search (이동 객체 경로 탐색을 위한 시공간 클러스터링 기법)

  • Lee, Ki-Young;Kang, Hong-Koo;Yun, Jae-Kwan;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.3 s.15
    • /
    • pp.67-81
    • /
    • 2005
  • Recently, the interest and research on the development of new application services such as the Location Based Service and Telemetics providing the emergency service, neighbor information search, and route search according to the development of the Geographic Information System have been increasing. User's search in the spatio-temporal database which is used in the field of Location Based Service or Telemetics usually fixes the current time on the time axis and queries the spatial and aspatial attributes. Thus, if the range of query on the time axis is extensive, it is difficult to efficiently deal with the search operation. For solving this problem, the snapshot, a method to summarize the location data of moving objects, was introduced. However, if the range to store data is wide, more space for storing data is required. And, the snapshot is created even for unnecessary space that is not frequently used for search. Thus, non storage space and memory are generally used in the snapshot method. Therefore, in this paper, we suggests the Hash-based Spatio-Temporal Clustering Algorithm(H-STCA) that extends the two-dimensional spatial hash algorithm used for the spatial clustering in the past to the three-dimensional spatial hash algorithm for overcoming the disadvantages of the snapshot method. And, this paper also suggests the knowledge extraction algorithm to extract the knowledge for the path search of moving objects from the past location data based on the suggested H-STCA algorithm. Moreover, as the results of the performance evaluation, the snapshot clustering method using H-STCA, in the search time, storage structure construction time, optimal path search time, related to the huge amount of moving object data demonstrated the higher performance than the spatio-temporal index methods and the original snapshot method. Especially, for the snapshot clustering method using H-STCA, the more the number of moving objects was increased, the more the performance was improved, as compared to the existing spatio-temporal index methods and the original snapshot method.

  • PDF

Nonlinear Vector Alignment Methodology for Mapping Domain-Specific Terminology into General Space (전문어의 범용 공간 매핑을 위한 비선형 벡터 정렬 방법론)

  • Kim, Junwoo;Yoon, Byungho;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.127-146
    • /
    • 2022
  • Recently, as word embedding has shown excellent performance in various tasks of deep learning-based natural language processing, researches on the advancement and application of word, sentence, and document embedding are being actively conducted. Among them, cross-language transfer, which enables semantic exchange between different languages, is growing simultaneously with the development of embedding models. Academia's interests in vector alignment are growing with the expectation that it can be applied to various embedding-based analysis. In particular, vector alignment is expected to be applied to mapping between specialized domains and generalized domains. In other words, it is expected that it will be possible to map the vocabulary of specialized fields such as R&D, medicine, and law into the space of the pre-trained language model learned with huge volume of general-purpose documents, or provide a clue for mapping vocabulary between mutually different specialized fields. However, since linear-based vector alignment which has been mainly studied in academia basically assumes statistical linearity, it tends to simplify the vector space. This essentially assumes that different types of vector spaces are geometrically similar, which yields a limitation that it causes inevitable distortion in the alignment process. To overcome this limitation, we propose a deep learning-based vector alignment methodology that effectively learns the nonlinearity of data. The proposed methodology consists of sequential learning of a skip-connected autoencoder and a regression model to align the specialized word embedding expressed in each space to the general embedding space. Finally, through the inference of the two trained models, the specialized vocabulary can be aligned in the general space. To verify the performance of the proposed methodology, an experiment was performed on a total of 77,578 documents in the field of 'health care' among national R&D tasks performed from 2011 to 2020. As a result, it was confirmed that the proposed methodology showed superior performance in terms of cosine similarity compared to the existing linear vector alignment.