본 논문은 사용자 행동인식을 위해 기존 PSO (Particle Swarm Optimization) 알고리즘의 경계선을 통한 데이터 분류에서 데이터의 수집환경에 의해 발생하는 문제를 벡터의 길이비교를 이용한 보정을 통해 보완한 알고리즘을 제안한다. 기존의 PSO 알고리즘은 데이터 분류를 위해서 데이터의 최소, 최대값을 이용하여 경계를 생성하고, 이를 이용하여 데이터를 분류하였다. 그러나 PSO를 이용하여 행동인식을 할 때 행동이 수집되는 환경에 따라서 경계에 포함되지 못해 행동이 분류되지 못하는 문제가 있다. 이러한 분류의 문제를 보완하기 위해 경계를 벗어난 데이터와 각 행동을 대표하는 데이터의 벡터 길이를 계산하고 최소길이를 비교하여 분류한다. 실험결과, 기존 PSO 방법에 비해 개선된 방법이 평균적으로 앉기 1%, 걷기 7%, 서기 7%의 개선된 결과를 얻었다.
패턴 분류 문제는 기계 학습 분야에서 매우 중요한 연구 주제이다. 하지만 불완전 데이터는 실생활에서 매우 빈번히 발생 할 뿐만 아니라 분류 모델의 학습도가 낮다는 문제점을 지니고 있다. 불완전한 데이터를 다루는 것에 대한 많은 방법들이 제안되어 왔지만 대부분의 방법들이 훈련 단계에 집중하고 있다. 본 논문에서는 삼각 형태의 퍼지 함수를 이용하여 불완전 데이터의 분류 알고리즘을 제안한다. 제안한 기법에서는 불완전한 특징 벡터에서의 불완전 데이터를 추론하고 학습하였으며, 추론된 데이터의 가중치를 삼각 퍼지 함수 분류기에 적용하였다. 실험을 통하여 제안한 기법이 상대적으로 높은 인식률을 나타냄을 확인할 수 있었다.
유전 발현 데이터는 생명체의 특정 조직에서 채취한 샘플을 마이크로어레이상에서 측정한 것으로, 유전자들의 발현 정도가 수치로 나타난 데이터이다. 일반적으로 정상조직과 이상조직에서 관련 유전자들의 발현 정도는 차이를 보이기 때문에 유전 발현 데이터를 통하여 암을 분류할 수 있다. 그러나 분류에 모든 유전자가 관여하지는 않으므로 효율적인 암의 분류를 위해서는 관련성 있는 소수의 유전자만을 선별해내는 작업인 특징선택 방법이 필요하다. 본 논문에서는 회귀분석의 변수선택방법중 하나인 전진 선택법(forward selection method)을 사용하여 유전자들을 선하고 분류하는 방법을 제안한다. 이 방법은 선택되는 유전자들의 중복된 정보를 최소화시켜 암의 분류에 있어 보다 효과적인 유전자 선택을 한다. 실험데이터는 대장암 데이터(Colon cancer dataset)를 사용하였고, 분류기는 k-최근접 이웃(KNN)을 사용하였다. 이 방법과 상관계수를 이용한 특징 선택방법인 피어슨 상관계수와 스피어맨 상관계수방법과 비교해본 결과 전진 선택법에 의한 특징선택 방법이 암의 분류에 있어서 더 효과적인 유전자 선택을 한다는 사실을 확인하였다. 실험결과 90.3%의 높은 인식률을 보였다. 추가적으로 림프종 데이터에 대한 실험을 하였고, 그 결과 전진 선택법의 유용성을 확인할 수 있었다.
인터넷의 급속한 성장과 더불어 많은 정보와 데이터들을 인터넷을 통하여 얻을 수 있게 되었으며 많은 단체들이 문서들을 웹을 통하여 이용 가능하게 만들고 있다. 이에 따라 다양한 정보와 데이터를 효과적으로 분류하고 검색하는 문서 분류 (Document Classification)에 대한 알고리즘이 다양한 분야에서 널리 연구되어 왔으며 본 논문에서 초점을 두고 있는 전자 도서관 (Digital Library) 분야에서도 활발히 연구되어지고 있다. 하지만 기존의 전자 도서관의 문서 분류 알고리즘들은 문서들의 각 단락의 비중을 고려하지 않은 채 단어들의 발생 빈도에 초점을 두어 많은 잡음 단어 (Noise Term)를 포함하고 그로 인하여 분류 성능이 떨어졌다. 본 논문에서는 문서 단락의 중요도에 따라 다른 .가중치를 부여하여 단어 지지도 (Term Support)가 높은 단어들을 추출하고 그 단어들로 연관 규칙 (Association Rules)을 이용하여 분류 규칙을 생성하는 방법을 제안한다. 제안된 방법의 성능평가를 위해 문서 분류에 널리 쓰이는 나이브 베이지안 분류자 (Na$\square$ve Bayesian Classifier) 및 기존의 단순 연관 규칙 분류자 (Associative Classifier)와 비교 평가하였다. 그 결과, 각 가중치가 부여된 연관 규칙 분류 방법이 나이브 베이지안 분류 방법과 단순 연관 규칙 분류 방법보다 높은 성능을 보였다.
경제 여건의 향상 및 생활양식의 변화로 최근 우리나라에서도 당뇨병 환자가 늘어남에 따라 당뇨병의 예측 및 치료가 중요한 관심사가 되고 있다. 본 논문은 1993년과 1995년 두 차례에 걸쳐 경기도 연천 지역 주민들의 여러 가지 신체 지수 등을 조사한 데이터를 대상으로, 1차 년도의 데이터로부터 동일한 환자가 2차 년도에 정상상태를 유지하는지 흑은 당뇨병으로 진행이 되는지를 예측하는 문제를 다룬다. 혈당량, 허리둘레 등의 수치가 당뇨병의 발병에 영향을 끼치는 것은 알려진 사실이므로, 현재의 데이터로부터 앞으로의 발병 가능성을 예측하는 것이 가능하며, 이는 환자에게 보다 정확한 정보를 알려줄 수 있으므로 의미가 있는 일이다. 예측을 위해 본 논문에서는 분류기를 사용하며, 예측율을 높이기 위해 여러 분류기를 BKS로 결합하였다. BKS (behavior knowledge space) 결합 방법은 분류기간의 독립 가정이 필요 없으며, 데이터 크기가 크고 전형적인 경우에 좋은 결과를 낼 수 있는 방법이다. BKS 결합 방법을 통해 실험을 해본 결과 단일 분류기로 실험을 한 결과보다 향상된 성능을 얻을 수 있었으며, 투표 결합 방법과 비교하여 더 좋은 성능을 보였다.
네트워크 기술의 발달에 따른 서비스의 증가는 네트워크 트래픽과 함께 취약점도 증대하여 이를 악용하는 행위도 늘어나고 있다. 따라서 네트워크 침입탐지 시스템은 증가하는 트래픽의 양을 처리할 수 있어야 하며, 악의적인 행동을 효과적으로 탐지 할 수 있어야 한다. 증가하는 트래픽을 효과적으로 처리하고 탐지의 정확성을 높이기 위해 처리 데이터를 감소시키는 기술이 요구된다. 이러한 방법들은 크게 데이터 필터링, 척도 선택, 데이터 클러스터링의 영역으로 구분되며, 본 논문에서는 척도 선택의 방법으로 데이터 처리의 감소 및 효과적 침입탐지를 수행할 수 있음을 보이고자 한다. 실험 데이터는 KDDCUP 99 데이터 셋을 이용하였으며, 통계적 척도선택의 방법으로 분류율, 오탐율, 거리값, 규칙, 선택된 척도 등을 제시함으로써 침입 탐지 시 데이터 처리량이 감소하였고, 분류율은 증가, 오탐율은 감소하여 침입 탐지 정확성이 높아짐을 알 수 있었다. 또한 본 논문에서 제시한 방법이 다른 관련연구에서 제시한 선택 척도보다 높은 정확성을 보임으로써 보다 유용함을 증명할 수 있었다.
지문분류는 대규모 인증시스템에 사용되는 지문 데이터 베이스를 종류별로 인덱싱 하거나 인식 시스템에 다양하게 쓰이는 매우 중요한 방법이다. 지문은 일반적으로 융선의 전체모양 등 전역적인 특징을 기반으로 분류하며, 분류방법에는 규칙기반 접근, 구문론적 접근, 구조적 접근, 통계적 접근, 신경망 기반 접근 등이 있다. 본 논문에서는 지문의 구조적인 특징을 바탕으로 관찰되는 특징의 상태가 매순간 변화하는 확률론적 정보추출 방식인 마코프 모델을 적용한 지문분류 방법을 제안한다. 지문 이미지의 전처리 과정을 거친 후 각 클래스 분류를 위해 대표 융선을 찾아 방향정보를 추출하고 이를 이용하여 5가지 클래스로 분류될 수 있도록 설계하였다. 좋은품질(Good)과 나쁜품질(Poor)의 데이터를 포함한 훈련집합을 사용하여 각 클래스별로 학습된 마코프 모델은 임의의 지문이미지 분류시 높은 분류율을 보였다. 또한 기존의 구조적 접근방법에 비하여 다양한 품질의 지문이미지의 방향성 정보를 이용한 확률론적 방법이기 때문에 예외적인 지문이미지 분류시 잘 적용될 수 있다.
개체명 인식은 정보 추출의 하위 작업으로, 문서에서 개체명에 해당하는 단어를 찾아 알맞은 개체명을 분류하는 자연어처리 기술이다. 질의 응답, 관계 추출 등과 같은 자연어처리 작업에 대한 관심이 높아짐에 따라 세부 분류 개체명 인식에 대한 수요가 증가했다. 그러나 기존 개체명 인식 성능에 비해 세부 분류 개체명 인식의 성능이 낮다. 이러한 성능 차이의 원인은 세부 분류 개체명 데이터가 불균형하기 때문이다. 본 논문에서는 이러한 데이터 불균형 문제를 해결하기 위해 대분류 개체명 정보를 활용하여 세부 분류 개체명 인식을 수행하는 방법과 대분류 개체명 인식의 오류 전파를 완화하기 위한 2단계 학습 방법을 제안한다. 또한 레이블 주의집중 네트워크 기반의 구조에서 레이블의 공통 요소를 공유하여 세부 분류 개체명 인식에 효과적인 레이블 임베딩 구성 방법을 제안한다.
한국데이타베이스학회 1998년도 국제 컨퍼런스: 국가경쟁력 향상을 위한 디지틀도서관 구축방안
/
pp.421-430
/
1998
지식경영을 위한 다양한 대상 업무중에서 텍스트 데이터의 마이닝은 특히 중요하다. 그 이유는 텍스트 데이터가 양적인 면에서 가장 풍부하고, 또 발견할 수 있는 지식을 가장 많이 포함하고 있기 때문이다. 본 논문에서는 텍스트 데이터베이스에서 지식발견을 위한 한 과정으로 텍스트 데이터베이스 내의 텍스트들을 분류하는 기법을 기술한다. 특히 문서 분류 방법은 데이터베이스의 일부 데이터를 훈련, 예제로 간주하여 교사 학습 알고리즘을 통해 학습한 후 나머지 데이터를 이용해 분류 정확성을 검증 및 향상시킨다. 시험 데이터로는 인터넷의 뉴스그룹의 기사를 이용하였고, 시험 결과 분류의 정확성은 한글 및 영문 모두 최소 70% 이상으로 나타났다.
$L_1$-데이터뎁스를 이용한 분류방법(L1DDclass)과 관측치들 사이의 $L_1$-거리를 이용한 분류방법(L1DISTclass)의 특징을 살펴보고, 이 두 방법을 결합한 새로운 분류방법 (DnDclass: Distance and Data-depth based classification)의 효용성을 소개하고자 한다. 모의실험을 통해 세가지 분류방법의 결과를 비교하고 제안된 분류방법이 다양한 경우에 더 효과적일 수 있다는 사실을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.