Fuzzy Classification Algorithm for Incomplete Data

불완전 데이터 처리를 위한 퍼지 분류 알고리즘

  • 이찬희 (동의대학교 디지털미디어공학과) ;
  • 박충식 (영동대학교 컴퓨터공학과) ;
  • 우영운 (동의대학교 멀티미디어공학과)
  • Published : 2009.05.29

Abstract

패턴 분류 문제는 기계 학습 분야에서 매우 중요한 연구 주제이다. 하지만 불완전 데이터는 실생활에서 매우 빈번히 발생 할 뿐만 아니라 분류 모델의 학습도가 낮다는 문제점을 지니고 있다. 불완전한 데이터를 다루는 것에 대한 많은 방법들이 제안되어 왔지만 대부분의 방법들이 훈련 단계에 집중하고 있다. 본 논문에서는 삼각 형태의 퍼지 함수를 이용하여 불완전 데이터의 분류 알고리즘을 제안한다. 제안한 기법에서는 불완전한 특징 벡터에서의 불완전 데이터를 추론하고 학습하였으며, 추론된 데이터의 가중치를 삼각 퍼지 함수 분류기에 적용하였다. 실험을 통하여 제안한 기법이 상대적으로 높은 인식률을 나타냄을 확인할 수 있었다.

Keywords