• Title/Summary/Keyword: 대형해양구조물

Search Result 89, Processing Time 0.02 seconds

Community Structure and Health Assessment of Macrobenthos in Tidal Flats along the West Coast of Korea in Spring and Summer (서해안 갯벌의 춘·하계 대형저서동물의 군집구조 및 건강도 평가)

  • Ong, Giho;Jeon, Seung Ryul;Koo, Jun Ho;Park, Jong-Woo;Jeung, Hee-Do;Kang, Jung-Ha;Cho, Yoon-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.500-509
    • /
    • 2021
  • This study investigated the characteristics of a macrobenthos community and sediment environment and assessed the health of tidal flats along the west coast of Korea. A survey was conducted from Ganghwa-do to Mokpo, Jeollanam-do in April (spring) and August (summer) 2017, and April (spring) 2018. The sediment grain sizes in the Chungcheongnam-do region were coarser, and the sediment in the Gyeonggi-do·Incheon, Jeollanam-do, and Jeollabuk-do regions were finer. A total of 140 macrobenthic species were collected from this study and using a cluster similarity analysis of the macrobenthos community, they were divided into four groups. Group2 was associated with Manila clam farm stations, and Ruditapes phillipinarum, Nephtys polybranchia and Lumbrineris nipponica were dominant. Group4 included some sites with finer sediment composed relatively, and Eteone longa and Nemertea unid. appeared at a high frequency. From the health assessment of the western tidal flat, the ISEP and BHI indices had a "High status," and the AMBI index had a "Good status." In conclusion, the tidal flats along the west coast of Korea have good ecological health. However, pollution indicator species such as Theora lata and Capitella capitata have appeared in some areas. Therefore, periodic administration and interventions are necessary to prevent deterioration of the tidal flat environment.

Reynolds number effects on flow over twisted offshore structure with drag reduction and vortex suppression (레이놀즈 수가 와류 감쇠 및 저항 저감형 나선형 해양 구조물 주위 유동에 미치는 영향)

  • Jung, Jae-Hwan;Yoon, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • We investigated the Reynolds number effects on the flow over a twisted offshore structure in the range of 3×103≤ Re ≤ 1 × 104. To analyze the effect of the twisted surface treatment, a large eddy simulation (LES) with a dynamic subgrid model was employed. A simulation of the cylindrical structure was also carried out to compare the results with those of the twisted offshore structure. As Re increased, the mean drag and lift coefficient of the twisted offshore structure increased with the same tendency as those of the cylindrical structure. However, the increases in the mean drag and lift coefficient of the twisted offshore structure were much smaller than those of the cylindrical structure. Furthermore, elongated shear layer and suppressed vortex shedding from the twisted offshore structure occurred compared to those of the cylindrical cylinder, resulting in a drag reduction and suppression of the vortex-induced vibration (VIV). In particular, the twisted offshore structure achieved a significant reduction of over 96% in VIV compared with that of the cylindrical structure, regardless of increasing Re. As a result, we concluded that the twisted offshore structure effectively controlled the flow structures with reductions in the drag and VIV compared with the cylindrical structure, irrespective of increasing Re.

A Study on Marine Accident Ontology Development and Data Management: Based on a Situation Report Analysis of Southwest Coast Marine Accidents in Korea (해양사고 온톨로지 구축 및 데이터 관리방안 연구: 서해남부해역 선박사고 상황보고서 분석을 중심으로)

  • Lee, Young Jai;Kang, Seong Kyung;Gu, Ja-Yeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.423-432
    • /
    • 2019
  • Along with an increase in marine activities every year, the frequency of marine accidents is on the rise. Accordingly, various research activities and policies for marine safety are being implemented. Despite these efforts, the number of accidents are increasing every year, bringing their effectiveness into question. Preliminary studies relying on annual statistical reports provide precautionary measures for items that stand out significantly, through the comparison of statistical provision items. Since the 2000s, large-scale marine accidents have repeatedly occurred, and case studies have examined the "accident response." Likewise, annual statistics or accident cases are used as core data in policy formulation for domestic maritime safety. However, they are just a summary of post-accident results. In this study, limitations of current marine research and policy are evaluated through a literature review of case studies and analyses of marine accidents. In addition, the ontology of the marine accident information classification system will be revised to improve the current limited usage of the information through an attribute analysis of boating accident status reports and text mining. These aspects consist of the reporter, the report method, the rescue organization, corrective measures, vulnerability of response, payloads, cause of oil spill, damage pattern, and the result of an accident response. These can be used consistently in the future as classified standard terms to collect and utilize information more efficiently. Moreover, the research proposes a data collection and quality assurance method for the practical use of ontology. A clear understanding of the problems presently faced in marine safety will allow "suf icient quality information" to be leveraged for the purpose of conducting various researches and realizing effective policies.

Modified Empirical Formula of Dynamic Amplification Factor for Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 수정 동적증폭계수 추정식)

  • Ma, Kuk-Yeol;Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.846-855
    • /
    • 2021
  • Eco-friendly and renewable energy sources are actively being researched in recent times, and of shore wind power generation requires advanced design technologies in terms of increasing the capacities of wind turbines and enlarging wind turbine installation vessels (WTIVs). The WTIV ensures that the hull is situated at a height that is not affected by waves. The most important part of the WTIV is the leg structure, which must respond dynamically according to the wave, current, and wind loads. In particular, the wave load is composed of irregular waves, and it is important to know the exact dynamic response. The dynamic response analysis uses a single degree of freedom (SDOF) method, which is a simplified approach, but it is limited owing to the consideration of random waves. Therefore, in industrial practice, the time-domain analysis of random waves is based on the multi degree of freedom (MDOF) method. Although the MDOF method provides high-precision results, its data convergence is sensitive and difficult to apply owing to design complexity. Therefore, a dynamic amplification factor (DAF) estimation formula is developed in this study to express the dynamic response characteristics of random waves through time-domain analysis based on different variables. It is confirmed that the calculation time can be shortened and accuracy enhanced compared to existing MDOF methods. The developed formula will be used in the initial design of WTIVs and similar structures.

Experimental Study on Flow Direction of Fire Smoke in DC Electric Fields (DC 전기장 내에서 발생하는 화재연기 진행 방향에 대한 실험적 연구)

  • Park, Juwon;Kim, Youngmin;Seong, Seung Hun;Park, Sanghwan;Kim, Ji Hwan;Chung, Yongho;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.675-682
    • /
    • 2021
  • Fire accidents on land and at sea can cause serious casualties; specifically, owing to the nature of marine plants and ships, the mortality rate at sea from suffocation in confined spaces is significantly higher than that on land. To prevent such cases of asphyxiation, it is essential to install ventilation fans that can outwardly direct these toxic gases from fires; however, considering the scale of marine fires, the installation of large ventilation fans is not easy owing to the nature of marine structures. Therefore, in this study, we developed a new concept for fire safety technology to control toxic gases generated by fires from applied direct current (DC) electric fields. In the event of a fire, most flames contain large numbers of positive and negative charges from chemi-ionization, which generates an "ionic wind" by Lorentz forces through the applied electric fields. Using these ionic winds, an experimental study was performed to artificially control the fire smoke caused by burning paper and styrofoam, which are commonly used as insulation materials in general buildings and ships. The experiments showed that a fire smoke could be artificially controlled by applying a DC voltage in excess of ±5 kV and that relatively effective control was possible by applying a negative voltage rather than a positive voltage.

Sliding Mode Fuzzy Control for Wind Vibration Control of Tall Building (Sliding Mode Fuzzy Control을 사용한 바람에 의한 대형 구조물의 진동제어)

  • 김상범;윤정방
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.79-83
    • /
    • 2000
  • A sliding mode fuzzy control (SMFC) with disturbance estimator is applied to design a controller for the third generation benchmark problem on an wind-excited building. A distinctive feature in vibration control of large civil infrastructure is the existence of large disturbances, such as wind, earthquake, and sea wave forces. Those disturbances govern the behavior of the structure, however, they cannot be precisely measured, especially for the case of wind-induced vibration control. Since the structural accelerations are measured only at a limited number of locations without the measurement of the wind forces, the structure of the conventional control may have the feed-back loop only. General structure of the SMFC is composed of a compensation part and a convergent part. The compensation part prevents the system diverge, and the convergent part makes the system converge to the sliding surface. The compensation part uses not only the structural response measurement but also the disturbance measurement, so the SMFC has a feed-back loop and a feed-forward loop. To realize the virtual feed-forward loop for the wind-induced vibration control, disturbance estimation filter is introduced. the structure of the filter is constructed based on an auto regressive model for the stochastic wind force. This filter estimates the wind force at each time instance based on the measured structural responses and the stochastic information of the wind force. For the verification of the proposed algorithm, a numerical simulation is carried out on the benchmark problem of a wind-excited building. The results indicate that the present control algorithm is very efficient for reducing the wind-induced vibration and that the performance indices improve as the filter for wind force estimation is employed.

  • PDF

Conceptual Design of Large Semi-submersible Platform for Wave-Offshore Wind Hybrid Power Generation (파력-해상풍력 복합발전을 위한 대형 반잠수식 플랫폼의 개념설계)

  • Kim, Kyong-Hwan;Lee, Kangsu;Sohn, Jung Min;Park, Sewan;Choi, Jong-Su;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.223-232
    • /
    • 2015
  • The present paper considers the conceptual design of floating wave-offshore wind hybrid power generation system. The worldwide demand for ocean renewable energy is increasing rapidly. Wave and offshore wind energy have been attractive among the various ocean renewable energy sources, and the site to generate electricity from wave and offshore wind accords well together. This means that a hybrid power generation system, which uses wave and offshore wind energy simultaneously has many advantages and several systems have been already developed in Western Europe. A R&D project for a 10 MW class floating wave-offshore wind hybrid power generation system has been also launched in Korea. A semi-submersible platform, which has four vertical columns at each corner of the platform to be connected with horizontal pontoons, was designed for this system considering arrangements of multiple wind turbines and wave energy converters. A mooring system and power cable were also designed based on the metocean data of installation site. In the present paper, those results are presented, and the difficulties and design method in the design of hybrid power generation system are presented.

Analysis on the Stress of Hydraulic Cylinder for Large Vessel by Boundary Element Method (대형선박용 유압실린더에서 경제요소법을 이용한 응력해석)

  • 김옥삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.423-434
    • /
    • 1995
  • It was used boundary element method(BEM) and analysed axisymmetric problem to solve hydraulic cylinder for large vessel acting uniform internal pressure(25N/m super(2)) within elastic limit. This paper was utilized the carbon steel tubes for machine structural purposed model, inner radius was 150mm and outer radius was 250mm, axial length was semi-infinite and the isoparametric element was used. The important results obtained in this study were summarized as follows. Radial, tangential and shearing stress occured the maximum stresses(48, -20 and 34MPa) at the inner radius and the minimum stresses(32, -4 and 18MPa) at the outer radius of the hydraulic cylinder for large vessel. But negative signs have meaning compressive stress and stress diminution ratio was about 0.15MPa/mm. The use of isoparametric element raised accuracy and the increment of input data lessened the error in internal point but computer run-time was increased. The double node was improved the internal solutions to settle discontinuity at corner and the double exponential formula lessened error of stress value at boundary neighborhood. And then coincidence between the analytical and exact results is found to be fairly good, showing that the proposed analytical by BEM is reliable.

  • PDF

Resistance of Chloride Penetration into High Strength Concrete Containing Mineral Admixtures according to Curing Conditions (광물질혼화재 혼합 고강도콘크리트의 양생조건에 따른 염화물이온 침투저항성)

  • Moon, Han-Young;Kim, Byoung-Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.185-194
    • /
    • 2004
  • In recent years, construction company makes inroads into the world construction market, and receives the order of extra-large concrete structure under marine environment in south-east asia specially. At this point of time, to enhance the quality of concrete, we research the High Strength Concrete (HSC) containing mineral admixtures. In this study, therefore, HSC with various combination of ordinary portland cement(OPC), blast-furnace slag(SG), silica fume(SF), and expansion admixture(SS) are cured 23 and $35^{\circ}C$ considering the site weather, and are cured in water for 3, 7 or 56 days respectively. Test results show that the HSC cured at $35^{\circ}C$ gains higher early-age strength but eventually gains lower later-age strength compare with the HSC cured at $23^{\circ}C$. Especially, HSC with combination of OPC+SG+SF+SS or OPC+SG+SF show very excellent resistance of chloride penetration. The permeability of HSC was therefore enhanced as because of containing the proper content of SG, SF, and SS and making dense micro-structure of HSC.

Changes in Macrobenthic Community Depending on the Anthropogenic Impact and Biological Factors of Boryeong Tidal Flat, Korea (보령 갯벌의 인위적 영향 및 생물학적 요인에 따른 대형저서동물 군집 변화)

  • SEUNG RYUL JEON;GIHO ONG;JIHO LEE;YUNA JEONG;JUN-HO KOO;KWANG-SEOK O;JONG-WOO PARK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.143-157
    • /
    • 2023
  • This study confirmed the characteristics of macrobenthic community due to anthropogenic environmental changes in the Boryeong Jugyo tidal flat, where the habitat of manila clam (Ruditapes philippinarum) and mud shrimp (Upogebia major) is separated. The total number of occurring species was 55 during the study period with an average habitat density of 338 ind./m2 and a biomass of 212.2 gWWt/m2. The number of occuring species increased from 27 species at the upper flat to 37 species at the lower flat, and the dominant species differed by tide levels (Upper: Leonnates persica, Middle: Heteromastus filiformis, Lower: R. philippinarum). The macro-benthic community sturctures of the top 10 species using cluster analysis and nMDS were divided into two groups, focusing on Manila clam culture farm of lower flats and middle flats with high habitat density, reflecting the influence of specific species. The sediment composition of the U. major habitat space fluctuated highly, but it was maintained annually, and the sorting coefficient was 2.1 𝜑, and the proportion of the same particle size was increased. In particular, because the middle flat has a dense anthropogenic impact, a dominant species, H. filiformis dominated and revealed a relationship with the density of burrow holes of U. major, which is considered to be a biological interaction between these two macrofauna in this tidal flat.