• Title/Summary/Keyword: 대기행렬이론

Search Result 63, Processing Time 0.023 seconds

A Variable Speed Limits Operation Model to Minimize Confliction at a Bottleneck Section by Cumulative Demand-Capacity Analysis (대기행렬이론을 이용한 병목지점 충돌위험 저감 가변속도제어 운영모형)

  • LEE, Junhyung;SON, Bongsoo
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.478-487
    • /
    • 2015
  • This study proposed a Variable Speed Limits(VSL) algorithm to use traffic information based on Cumulative Demand-Capacity Analysis and evaluated its performance. According to the analysis result, the total of delay consisted of 3 separate parts. There was no change in total travel time although the total of delay decreased. These effects was analysed theoretically and then, evaluated through VISSIM, a microscopic simulator. VISSIM simulation results show almost same as those of theoretical analysis. Furthermore in SSAM analysis with VISSIM simulation log, the number of high risk collisions decreased 36.0 %. However, the total delay decrease effect is not real meaning of decrease effect because the drivers' desired speed is same whether the VSL model is operated or not. Nevertheless this VSL model maintains free flow speed for longer and increases the cycle of traffic speed fluctuation. In other words, this is decrease of delay occurrence and scale. The decrease of speed gap between upstream and downstream stabilizes the traffic flow and leads decrease number of high risk collision. In conclusion, we can expect increase of safety through total delay minimization according to this VSL model.

A Workflow Time Analysis Applying the Queueing Model (대기행렬모형에 의한 워크플로우 시간분석)

  • Park, Jinsoo
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • Traditional workflow time analyses have been performed treating an activity as an independent M/M/1queueing system. Using the general forms of performance measures in the M/M/1 system, various aspects of analyses can be performed. Especially, on the time analysis of an AND structure in a workflow system, the mean system sojourn time can be formalized by applying the performance measures of M/M/1 system. In the real workflow system, the AND structure cannot be described correctly under the assumption of independent M/M/1 systems. To overcome this limitation, this research makes the assumption that the all activities for a task starts simultaneously. In this situation, the theoretical solution can be derived using the performance measures of the M/G/1 system. In addition, the simulation modeling method will be proposed to analyze the AND structure of a real workflow system. Finally, some numerical results from the theoretical solutions and simulation models will be provided for verification. The main performance measures used in this research are mean queueing time and mean sojourn time.

Development of A System Optimum Traffic Control Strategy with Cell Transmission Model (Cell Transmission 이론에 근거한 시스템최적 신호시간산정)

  • 이광훈;신성일
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.193-206
    • /
    • 2002
  • A signal optimization model is proposed by applying the Cell-Transmission Model(CTM) as an embedded traffic flow model to estimate a system-optimal signal timing plan in a transportation network composed of signalized intersections. Beyond the existing signal-optimization models, the CTM provides appropriate theoretical and practical backgrounds to simulate oversaturation phenomena such as shockwave, queue length, and spillback. The model is formulated on the Mixed-Integer Programming(MIP) theory. The proposed model implies a system-optimal in a sense that traffic demand and signal system cooperate to minimize the traffic network cost: the demand departing from origins through route choice behavior until arriving at destinations and the signal system by calculating optimal signal timings considering the movement of these demand. The potential of model's practical application is demonstrated through a comparison study of two signal control strategies: optimal and fixed signal controls.

Waiting Time Analysis of Discrete-Time BMAP/G/1 Queue Under D-policy (D-정책을 갖는 이산시간 BMAP/G/1 대기행렬의 대기시간 분석)

  • Lee, Se Won
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.53-63
    • /
    • 2018
  • In this paper, we analyze the waiting time of a queueing system with D-BMAP (discrete-time batch Markovian arrival process) and D-policy. Customer group or packets arrives at the system according to discrete-time Markovian arrival process, and an idle single server becomes busy when the total service time of waiting customer group exceeds the predetermined workload threshold D. Once the server starts busy period, the server provides service until there is no customer in the system. The steady-state waiting time distribution is derived in the form of a generating function. Mean waiting time is derived as a performance measure. Simulation is also performed for the purpose of verification and validation. Two simple numerical examples are shown.

Adaptive Control Scheme of Air Tanker Ground Waiting Time Based on a Multi-Server Queuing Model (다중서버 큐잉 모델을 이용한 공중급유기 지상 대기시간 적응적 제어 기법)

  • Sohn, Yong-Sik;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.33-46
    • /
    • 2022
  • This paper, in order to minimize the ground waiting time of an Air tanker, the queuing theory, that is, a queue that calculates the waiting time under single-server and multi-server situations, was used in the study. Since the national budget and resources are limited, the unlimited increase of the logistics support service team is limited. Therefore, the number of logistic support service teams that can adaptively control the ground waiting time according to the wartime preparation stage or war environment was calculated. The results of this study provide a stipulated standard for calculating the optimal number of air tanker logistic support service teams of the Air Force, providing a basis for the logistical commander to assign logistic support service teams to each stage from peacetime to wartime.

Common Spectrum Assignment for low power Devices for Wireless Audio Microphone (WPAN용 디지털 음향기기 및 통신기기간 스펙트럼 상호운용을 위한 채널 할당기술에 관한 연구)

  • Kim, Seong-Kweon;Cha, Jae-Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.724-729
    • /
    • 2008
  • This paper presents the calculation of the required bandwidth of common frequency bandwidth applying queueing theory for maximizing the efficiency of frequency resource of WPAN(Wireless Personal Area Network) based Digital acoustic and communication devices. It assumed that LBT device(ZigBee) and FH devices (DCP, RFID and Bluetooth) coexist in the common frequency band for WPAN based Digital acoustic and communication devices. Frequency hopping (FH) and listen before talk (LBT) have been used for interference avoidance in the short range device (SRD). The LBT system transmits data after searching for usable frequency bandwidth in the radio wave environment. However, the FH system transmits data without searching for usable frequency bandwidth. The queuing theory is employed to model the FH and LBT system, respectively. As a result, the throughput for each channel was analyzed by processing the usage frequency and the interval of service time for each channel statistically. When common frequency bandwidth is shared with SRD using 250mW, it was known that about 35 channels were required at the condition of throughput 84%, which was determined with the input condition of Gaussian distribution implying safety communication. Therefore, the common frequency bandwidth is estimated with multiplying the number of channel by the bandwidth per channel. These methodology will be useful for the efficient usage of frequency bandwidth.

Comparison of Phase-Screen-Generation Methods for Simulating the Effects of Atmospheric Turbulence (대기 외란을 모사하는 위상판 생성 방법 비교)

  • Ha, Dung T.;Mai, Vuong V.;Kim, Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.3
    • /
    • pp.87-93
    • /
    • 2019
  • Phase screens are widely used to simulate the effects of atmospheric turbulence on the phase fluctuations of a light beam. We compare three sampled-based phase-screen-generation methods (the fast-Fourier-transform, subharmonic, and covariance-matrix methods), in terms of accuracy and simulation time. We show that the covariance method generates the phase screens most accurately, with simulation time comparable to the other sampled-based methods.

GIUH Model for River Runoff Estimation (하천 유출량 산정을 위한 GIUH모델)

  • 이순탁;박종권
    • Water for future
    • /
    • v.20 no.4
    • /
    • pp.267-278
    • /
    • 1987
  • This study aims at the decision of geomorphologic instantaneous unit hydrograph(GIUH) model parameter fore the ungaged or the data deficiented Basin, to analyze rainfall runoff relation in river basin by applying queueing theory with geomorphologic factors.The concept of GIUH model is based upon the principle of queueing theory of rain drops which may follow many possible routes during rainfall period within watershed system to ist outlet. Overland flow and stream flow can be simulated, respectively, by linear reservoir and linear channel conceptual models. Basically, the model is a mon-lineal and time variant hydrologic system model. The techniques of applying are adopted subarea method and mean-value method, the watershed is divided according to its stream number and order. To prove it to be applicable, the GIUH model is applied to the Wi-Stream basin of Nak-Dong River(Basin area; 475.53$\textrm{km}^2$), southen part of Korea. The simulated and the observed direct runoff hydrographs are compared with the peak discharge, times to peak and coefficients of efficiency, respectively, and the results show quite satisfactory.Therefore, th GIUH model can be extensively applied for the runoff analysis in the ungaged and the data deficiented basin.

  • PDF

A Study on the Evaluation Method of Level of Service in Transfer Walking Facilities (환승 보행시설의 서비스수준 평가방법에 관한 연구)

  • Yun, Tae-Gwan;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.1
    • /
    • pp.143-156
    • /
    • 2010
  • The walking is very important because of its environment friendly and low accident rate, and transferring is also important as increasing public transportation uses. Facilities for transferring such as transfer path in Sadang station and internal stairways in Sindorim station are the object of this paper. Using preexistence methodology for Level of Service is not appropriate to transferring facilities because they are occurred only when the train arrive that station. To solve this problem, this paper uses queuing theory and utilization factor. In result, we can get Level of Service which can simulate real situation of the facilities by using new methodology which introduce by this paper. Also it reveals that preexistence methodology cannot simulate real phenomenon in transferring center.

Determination of the Required Minimum Spacing between Signalized Intersections and Bus-Bays (신호교차로와 버스정류장간 이격거리 산정에 관한 연구)

  • 하태준;박제진;임혜영
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.73-82
    • /
    • 2002
  • The influence of bus stops near signalized intersections is one of the important factors which cannot be negligible in the analysis of the capacity of signalized intersections. Absence of consideration of bus bay can reduce capacity and increase the time that the stop of buses block other traveling vehicles. This influence is reflected by the bus blockage adjustment factor in KHCM, but the factor does not consider the course of each bus passing the intersection. Particularly, left turn buses have more influence on the capacity than the other buses and require the minimum length of the road for lane changes. All the existing criteria can apply only to arterial roads on which mostly traffic flows are continuous. And the criteria. which can determine the optimum location and the minimum distance between a signalized intersection and a bus bay, is not prepared and the related study is insufficient. Therefore, a theoretical formula is derived in this study being based on the theories which are avaliable to apply to the situation of signalized intersections.