• Title/Summary/Keyword: 대구경 말뚝

Search Result 92, Processing Time 0.023 seconds

A Study on Lateral Loading the Field Test of Pile for Large Diameter Drilled Shaft Pile (대구경 현장타설말뚝에 대한 현장수평재하시험에 관한 연구)

  • Choi, Yong-Kyu;Lee, Min-Hee;Lee, Chung-Sook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.33-39
    • /
    • 2004
  • Most of pile foundations are a condition of fixed head on pile, but lateral loading test of pile have performed to free head on generally. This study performed field lateral loading test accompanying lateral displacement by depth of pile for two cases(fixed head and free head) and analyzed lateral behavior of large drilled shaft. Furthermore compared theoretical equation with result of lateral loading test.

  • PDF

Design of Large-Diameter Drilled Shaft Bearing on Gravel Layer (대구경 현장타설말뚝의 자갈 지지층 적용 설계사례)

  • Lee, Jae-Hoon;Joo, Soo-Il;Ryu, Tae-Ha;Choi, Jae-Ho
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.115-132
    • /
    • 2006
  • 본 글은 부산-김해간 경량전찰 건설공사의 기초설계시 현장타설말뚝 기초의 지지층을 모래자갈층으로 적용한 사례이다. 낙동강 유역은 퇴적층이 발달하여 풍화암 이상의 기반암층이 지표하 60~80m 이후에서 출현하며, 40m 이상의 심도에서 매우 조밀한 상태의 모래자갈층이 10-20m 두께로 분포하고 있어, 모래자갈층을 관통하여 기반암에 말뚝기초를 지지할 경우 기초공사에 상당한 기간이 소요될 뿐만 아니라, 시공성과 경제적인 측면에서 매우 불리하다. 이에 대한 개선방안으로 대구경 현장타설말뚝을 N치 50 이상의 조밀한 상태의 모래자갈층에 지지하였으며, 인근현장의 적용사례, 기초 구조물 안전성 검토 및 현장재하시험 등의 비교분석을 통하여 모래자갈 지지층의 적정성을 확인하였다. 따라서, 풍화암 이상의 지지지반 출현심도가 60m 이상으로 매우 깊고, 지지지반 상부에 모래자갈층이 두껍게 분포하는 경우에는 모래자갈층을 말뚝기초의 지지층으로 활용하는 방안이 시공성 및 경제성 측면에서 합리적이라 판단된다.

  • PDF

Evaluation of Lateral Subgrade Reaction Coefficient Considering Empirical Equation and Horizontal Behavior Range of Large Diameter Drilled Shaft (경험식을 통한 대구경 현장타설말뚝에 대한 수평지반반력계수와 수평거동 영향범위의 평가)

  • Yang, Woo-Yeol;Hwang, Tae-Hyun;Kim, Bum-Joo;Park, Seong-Bak;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • The lateral bearing characteristics of large diameter drilled shaft depend greatly on the stiffness of the pile, horizontal subgrade reaction of adjacent ground. In particular, the empirical evaluation results of the horizontal subgrade reaction coefficient which are widely used in pile design are very important factors in evaluating the lateral bearing capacity of drilled shaft because the difference in bearing capacity depends on the estimated result. Nevertheless, the evaluation of the horizontal subgrade reaction coefficient on the large diameter drilled shaft is insufficient. In addition, although the range of influence and the location of the maximum moment which is the weaken zone on the pile may be correlated and relationship of these are major consideration in determining the reinforced zone of drilled shaft, the previous studies have not been evaluated it. In this study, the field test and nonlinear analysis of large diameter drilled shaft were performed to evaluate the horizontal subgrade reaction coefficient and to investigate the relationship between the influence range 1/β of the pile and the location of the maximum moment zm. In the result, the lateral bearing capacity of drilled shaft showed a difference in results by about 190% according to the empirical equation on the horizontal subgrade reaction coefficient. And the relationship between the influence range of the pile and the location of the maximum moment was evaluated as a linear relationship depending on the soil density.

Shear Performance of Large-Diameter Composite PHC Pile Strengthened by In-Filled Concrete and Shear Reinforcement (속채움 콘크리트와 전단철근을 사용한 대구경 합성 PHC말뚝의 전단보강 성능)

  • Hyun, Jung-Hwan;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.67-73
    • /
    • 2017
  • Recently, the demand for large diameter piles has been rapidly increased in order to secure the allowable bearing capacity of pile foundation due to the increase of large structures such as high rise buildings. In this study, to improve the shear capacity of a conventional PHC pile, a large diameter composite PHC pile strengthened by in-filled concrete and shear reinforcement was manufactured. All the piles were tested according to the shear strength test method of Korean Standard. As a result of the shear test, the F-type piles which are produced without shear reinforcement occurred abrupt horizontal cracks after flexural and inclined shear cracks occurred. On the contrary, the FT-type piles which are produced with shear reinforcement exhibited stable flexural and inclined shear cracks uniformly over the entire pile without abrupt horizontal cracks. Furthermore, the maximum load of the large diameter composite PHC pile improved to 2.9 times in the F series, and more than 3.3 times in the FT series compared to the conventional PHC pile. This result indicated that FT-type piles had excellent composite behavior due to the shear reinforcement and effectively prevented the unstable growth of inclined shear cracks.

Pile Integrity Test Examples for Displacement in-situ Concrete Piles (소구경 현장타설 콘크리트 말뚝의 건전도 시험사례)

  • 이명환;홍헌성;김성회;전영석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.423-430
    • /
    • 1999
  • PIT collector를 이용한 저변형률 건전도시험(low strain pile integrity test)은 충격에 의해 발생하는 응력파장의 특성을 분석하여 말뚝의 길이와 형상을 추정하는 방법이다. PIT시험(Pile Integrity Test)은 장말뚝인 경우와 지반저항이 큰 경우 선단부의 위치가 분명하게 확인되지 않아 해석이 불가능하다는 단점이 있으며 적용할 수 있는 대상말뚝에도 종류에 따라 제한된다. 그러나 이밖의 경우 간편성과 말뚝의 대략적인 단면형상을 파악할 수 있다는 점에서 다른 방법에 비하여 유리하다. 이 때문에 국내에서도 PIT시험의 적용 빈도가 증가하는 추세이며 지난 3~4년 동안 주로 대형 교량건설 현장의 대구경 현장타설말뚝에 대하여 적용되어 왔다. 최근 국내에서는 대구경 현장타설말뚝이 아닌 소구경 현장타설말뚝에 대하여 PIT시험을 실시하는 경우도 증가하고 있다. 현장 조건상 말뚝길이가 길지 않은 경우 시험분석결과 말뚝의 선단부가 분명하게 확인되었고 말뚝 중간부 및 하부의 necking 또는 bulging, 선단부의 단면이 확대되거나 축소되는 형상 등 다양한 단면형상을 나타내었다. 이 결과로부터 건전도시험의 효과적인 분석방안, 시간(양생)효과 등을 판단할 수 있음을 확인할 수 있었다.

  • PDF

A Study on Behavior Analysis of Large-diameter Drilled Shaft by Design Methods in Deep Water Depth Composite Foundation (대수심 대형 복합기초에서 설계기법에 따른 대구경 현장타설말뚝의 거동 분석 연구)

  • Han, Yushik;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.5-16
    • /
    • 2015
  • In the long span bridge construction, construction cost portion of large scale marine foundation is about 40% (KICTEP, 2007). In this study, designs for deep water depth large composite foundation of a super long span cable-stayed girder bridge of prototype were performed by three design methods (ASD, LRFD, Eurocode) and the behaviors of a large diameter drilled shaft were analyzed and the 3D numerical analysis was performed. As a result, the soft rock socket lengths in allowable stress design estimation method were the longest. The soft rock socket lengths estimated by the design approach 2 among Eurocode and the LRFD were similar. The longer the socket length socketed in the soft rock was, the smaller the axial force acting on a large-diameter drilled shaft head was and the smaller the settlement of drilled shaft was.

Settlement Characteristics of Large Drilled Shafts Embedded in Bed Rocks (암반에 근입된 대구경 현장타설말뚝의 침하특성)

  • Hong Won-Pyo;Yea Geu-Guwen;Nam Jung-Man;Lee Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.111-122
    • /
    • 2005
  • The data on the pile load tests performed on 35 large drilled shafts are analyzed to investigate the load-settlement characteristics of large drilled shafts embedded in bed rocks. Generally, the settlement of large drilled shafts embedded in bed rocks is too small to determine the ultimated load with application of the regulation in design code for either the total settlement or the residual settlement. Therefore, to determine the yield load of large drilled shafts embedded in bed rocks, p(load)-logS (settlement) curve method, which has been proposed originally for the driven pile, was applied to the investigation on the data of the pile load tests. This technique shows that the yield load can be determined accurately and easily rather than other conventional techniques such as P-S, logp-logS, S-logt, and P-S curve methods. An empirical equation is proposed to represent the relationship between pile load and settlement before the yield loading condition. And the settlement of piles was related with the depth embedded in rock as well as rock properties. Based on the investigation on the data of pile load tests, the resonable regulations f3r both the total settlement and the residual settlement are proposed to determine the yield load of large drilled shafts embedded in bed rocks.

Lateral Bearing Characteristics of Large Diameter Drilled Shafts by Casing Reinforcement Condition Using Non Linear Analysis (비선형해석을 이용한 케이싱 보강조건에 따른 대구경 현장타설말뚝의 수평거동특성)

  • Yoo, Jin-Ho;Moon, In-Jong;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.3
    • /
    • pp.23-33
    • /
    • 2020
  • The lateral bearing characteristics are important factors in the case of large diameter drilled shafts and the measures to increase this are to improve the adjacent ground of the pile to increase the rigidity and to increase the rigidity of the pile itself. There are many suggestions for increasing rigidity by reinforcing casing on the pile, but few studies have been done related to this. Therefore, in this study, the lateral bearing characteristics according to casing reinforcement length were studied for each ground condition using non-linear analysis to evaluate the appropriate casing reinforcement length of the large diameter drilled shafts depending on the ground conditions. As a result, the lateral bearing characteristics of the large diameter drilled shafts are most effective if the casing reinforcement length ratio is 1.2, and depending on the ground conditions, the more loose the ground, the greater the reinforcement effect.

Horizontal Behaviour Characteristics for Single Drilled Shaft Embedded in Granite Gneiss (화장편마암에 근입된 단일현장타설말뚝의 수평거동특성)

  • Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.493-499
    • /
    • 2008
  • In order to evaluate the lateral behavior characteristics of single drilled shaft embedded in granite gneiss, a lateral load test was conducted in field. Horizontal displacement according to lateral load were measured along with the depth by an inclinometer installed in the shaft. In this study, We have evaluated horizontal displacement characteristics comparing the measurement values with calculating results by theoretical formula. Based on the comparison, the Chang's method was similar with the measurement values even though it was slightly underestimated. However, the finite analysis method and p-y method was overestimated, especially on the upper part of the ground.

A Study on Perimeter Load Transfer Fuctions of the Large Diameter Drilled Shafts Depending on Soil Types During the Static Pile Load Tests (정재하시험시 지반종류별 대구경 현장타설말뚝의 주면하중전이함수에 관한 연구)

  • Jung, Ho-Young;Hwang, Seong Chun;Choi, Yongkyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5C
    • /
    • pp.163-170
    • /
    • 2011
  • Perimeter load transfer functions were developed by an analysis of the static pile load test results of the 7 large diameter drilled shafts constructed in domestic areas. Using the pile axial load distributions obtained from the static pile load tests of large diameter drilled shafts, the unit skin frictions were analyzed and, based on unit skin friction test data, perimeter load transfer functions could be suggested. The load transfer distributions calculated by suggested functions and the load transfer functions obtained from the bi-directional pile load tests were compared. As a result, the 2 load transfer distributions were coincided, respectively.