• Title/Summary/Keyword: 단일노즐

Search Result 55, Processing Time 0.02 seconds

Analysis of Electric Field Distribution of PVDF Electrospinning According to Electrospinning Conditions (전기방사 조건에 따른 PVDF 방사의 전기장 분포 해석)

  • Yonjo Jung;Minsang Lee;Honggun Kim
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.4
    • /
    • pp.9-15
    • /
    • 2023
  • In this study, electric field analysis was conducted for each process as a preliminary step in the design of the electrospinning device to apply the electrospinning PVDF nanofibers to increase the filtering effect of insect screens. In the electrospinning analysis using a single nozzle, it was confirmed that there was a decrease in the electrostatic field strength as the tip's size decreased, an increase in the voltage, and no effect depending on the TCD distance. In addition, it was confirmed that the closer the distance between tips, the more electric field interference occurs, and this was found to have a more significant effect on the tip located in the center with tips on both sides. Therefore, based on these analytical results, it is believed that an increase in production speed can be expected by establishing an efficient process line by confirming the radiating area of the collector and designing the spacing between multi-nozzles through actual experiments.

  • PDF

Performance Evaluation on Single Nozzle and Multi-Nozzle Virtual Impactors (단일 노즐 및 멀티-노즐 가상 임팩터의 성능평가)

  • 김대성;김민철;이규원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.59-60
    • /
    • 2000
  • 에어로졸을 분리할 수 있는 장비로는 전기적 이동차 분석기(differential mobility analyzer), 싸이클론(cyclone), 습식 충돌기(impinger), 습식 싸이클론(wet cyclone), 확산 배터리(diffusion battery), 관성 임팩터(inertial impactor), 그리고 가상 임팩터(virtual impactor) 등이 있다. 이중 가상 임팩터는 설계 및 제작이 비교적 간편하고, 입자를 분리 및 농축하는데도 좋은 성능을 나타냄으로 널리 사용되어져 왔다. (중략)

  • PDF

Steady & Pulse Mode Fire Tests of Hydrazine Thrusters (단일 하이드라진 추력기 연소시험 성능평가)

  • 이성택;이상희;최영종;류정호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.31-31
    • /
    • 1998
  • 위성체의 보조추진시스템은 임구궤도까지의 궤도진입 및 임무궤도상에서의 속도 또는 자세제어에 필요한 임펄스를 제공한다. 단일하이드라진 추력기는 하이드라진(H$_2$H$_4$)과 자발적 촉매(Shell 405)의 발열 및 흡열 열분해 반응에 의해 발생하는 질소($N_2$), 수소(H$_2$), 암모니아(NH$_3$), 혼합가스를 노즐을 통해 방출하므로써 요구되는 impulse를 얻는다. 단일하이드라진 추력기 설계는 주입기, 촉매대, 노즐과 기타 설계 형태에 따른 다지관, 링, 스크린, 지지판 등의 부수적인 부품으로 구성된다. 추력기 제작 과정은 크게 piece-parts 기계가공, HEA(Head End Assembly)와 TCA(Thrust Chamber Assembly)로 구성되고 각 세부공정마다 전수시험 및 검사를 가진다. 연소시험설비는 최소 모사진 공 수준이 고도 100,000 ft(8.4 torr)를 만족시킬 수 있는 진공설비, 시험제어부, 성능변수 측정 및 처리부, 추진제 가압 공급부, 기타 환경 안전 및 부대 설비로 구성된다. 추력기 연소성능시험 절차는 추진제 충전 및 오염 여부 표본 검사, 가압 및 공급 라인 이상여부 확인, 추력기 장착, 추진제 가압 및 공급, 시험장치 보정, 진공 모사 및 연소성능시험, data 처리 등으로 구성된다.

  • PDF

Heat Transfer from Single and Arrays of Impinging Water Jets(I)-Single Water Jet- (단일수분류 및 수분류군에 의한 열전달(I)-단일수분류-)

  • Eom, Gi-Chan;Lee, Jong-Su;Yu, Ji-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1105-1114
    • /
    • 1997
  • The heat transfer characteristics of free surface water jet impinging normally against a flat uniform heat flux surface were investigated. This deals with the effect of three nozzle configurations (Cone type, Reverse cone type, Vertical circular type) on the local and the average heat transfer. Heat transfer measurements were made for water jet issuing from a nozzle of which exit diameter 8 mm. The experimental conditions investigated are Reynolds number range of 27000 ~ 70000( $V_{O}$=3 ~ 8 m/s), nozzle-to-target plate distances H/D=2 ~ 10, and radial distance from the stagnation point r/D ~ = 0 ~ 7.42. For all jet velocities of H/D=2, the local Nusselt number decreased monotonically with increasing radial distance. However, for H/D from 4 to 10, and for the jet velocity $V_{O}$.geq.7 m/s for Cone type nozzle and $V_{O}$.geq.6 m/s for the other type nozzles, the Nusselt number distributions exhibited secondary peaks at r/D=3 ~ 3.5. For Reverse cone type nozzle and Vertical circular nozzle, the maximum stagnation point heat transfer and the maximum average heat transfer occurs at H/D=8. But for the Cone type nozzle, the maximum stagnation and average heat transfer occurs at H/D=10, 4, respectively. From the optimum nozzle-to-target plate distance, the stagnation and the average heat transfer reveal the following ranking: Reverse cone type nozzle, Vertical circular type nozzle, Cone type nozzle.ozzle.

Estimation of Process Window for the Determination of the Optimal Process Parameters in FDM Process (FDM 3D 프린터 최적 공정 변수 선정을 위한 공정 윈도우 평가법)

  • Ahn, Il-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.171-177
    • /
    • 2018
  • In 3D printing technologies, many parameters should be optimized for obtaining a part with higher quality. FDM (fused deposition modeling) printer has also diverse parameters to be optimized. Among them, it can be said that nozzle temperature and moving speed of nozzle are fundamental parameters. Thus, it should be preceded to know the optimal combination of the two parameters in the use of FDM 3D printer. In this paper, a new method is proposed to estimate the range of the stable combinations of the two parameters, based on the single line quality. The proposed method was verified by comparing the results between single line printing and multi-layered single line printing. Based on the comparison, it can be said that the proposed method is very meaningful in that it has a simple test approach and can be easily implemented. In addition, it is very helpful to provide the basic data for the optimization of process parameters.

Examination on Liquid Pool Fire Extinguishment Performance of Twin-fluid Nozzle (2유체노즐의 액체풀 화재 소화 성능에 대한 검토)

  • Jeong, Chan Seok;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.59-64
    • /
    • 2017
  • In the present experimental study, the liquid pool fire extinguishment performance of twin-fluid nozzle was preliminarily examined. For the liquid pool fire, the ethanol of 1200 ml (volume) was prepared, and two kinds of air flow rate conditions (40 l/min and 70 l/min) were tested at the constant water flow rate condition of 632 ml/min. In the present experimental ranges, the fire extinguishment experiments were carried out using the twin-fluid nozzle and its spray characteristics (i.e., SMD (Sauter Mean Diameter) and flow distribution) were investigated. As a result, at the higher air flow rate, the liquid pool fire was extinguished quickly and successfully, which was discussed using the visualization and spray characteristics of twin-fluid nozzle. In addition, through the comparison with some of previous results, it was found that potentially, the twin-fluid nozzle can extinguish the liquid pool fire under the smaller water flow rate condition, as compared with the single-fluid nozzle.

The Study of Aerodynamic Characteristics of Jet-Vane Affected by the Shroud (Shroud의 영향에 따른 제트 베인의 공기역학적 특성 연구)

  • Park, Soon-Jong;Park, Jong-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.34-41
    • /
    • 2012
  • Thrust vector control system is a control device which is mounted on the exit of the nozzle to generate pitch, yaw and roll directional force by deflecting flow direction of the supersonic jet from the nozzle. Thermal and aerodynamic loads are acting on the surface of jet vane when it is exposed to the jet flow. Axial thrust loss and side thrust loss are affected by shock patterns and interactions between jet-vanes which varies with jet-vane geometry and turning angle. In this research, the performance estimation using the numerical simulation analysis of the nozzle is given and the investigation of the flow visualization and aerodynamic performance with the enforced power to the vane is taken.

Cooling Characteristics of a Hot Steel Plate by a Circular Impinging Liquid Jet (원형수직 충돌 수분류에 의한 고온강판의 냉각특성 연구)

  • 오승묵;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1150-1155
    • /
    • 1992
  • The cooling characteristics of a hot steel plate by a laminar impinging water bar were investigated experimentally. The dynamic parameters investigated were nozzle height L between nozzle and the hot plate, flow rate Q, and initial cooling temperature. Because the boiling phenomena on a hot steel plate are unsteady and change discontinuously, it is difficult to analyze the cooling characteristics directly. In this study the cooling efficiency was estimated by using the temperature decay rates and expansion speed of the water cooling zone. Temperature in the water cooling zone decreased rapidly and the radius of the water cooling zone expanded nearly in proportion to square root of the cooling time. With increasing initial temperature of a hot steel plate, the cooling efficiency became descendent. The cooling curve in the case of L/D = 30 showed the largest temperature decay rate and excellent cooling performance.

Ethanol Pool Fire Extinguishing Experiment Using Twin-fluid Nozzle Supplied with Water and Air (물과 공기가 공급되는 2유체노즐을 활용한 에탄올 풀화재 소화 실험)

  • Jeong, Chan Seok;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.37-43
    • /
    • 2019
  • In this study, ethanol pool fire extinguishing experiments were conducted using a twin-fluid nozzle. Ethanol pool fires, 5.027×10-3 ㎡ and 1.131×10-2 ㎡ in size (80 mm and 120 mm in fuel pan diameter, respectively), were tested, and the flow rates supplied to the twin-fluid nozzle for fire extinguishing were 156-483 g/min and 20-70 L/min for water and air, respectively. The heat release rate increased with increasing fire source area, and heat release rates of 5.027×10-3 ㎡ and 1.131×10-2 ㎡ in size were measured to be 1.01 kW and 5.51 kW, respectively. For both fire source cases in the present experimental range, regardless of the water flow rates, the ethanol fires were extinguished successfully under the high air flow rate condition (e.g., above 40 L/min). On the other hand, under all water flow rate conditions, the fire extinguishing time and water consumption decreased with increasing air flow rate, which were approximately 23 s and 185 g under high air flow rate conditions (e.g., above 50 L/min), respectively. Based on the water consumption per heat release rate, the present experimental data were compared with the previous ones using a single-fluid nozzle, and it was found that the twin-fluid nozzle could extinguish a fire with a lower water consumption than a single-fluid one.

Experimental Study on the Extinguishing Characteristics of Twin-fluid Nozzle using a Small-scale Hexane Pool Fire (소규모 헥산 풀화재를 이용한 2유체노즐의 소화 특성에 대한 실험적 연구)

  • Jeong, Chan Seok;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.35-41
    • /
    • 2018
  • Experiments were performed on 140 ml hexane pool fire extinguishment using a twin-fluid nozzle. For this pool fire, the area of the fire source (round shape of 80 mm in diameter) was $0.005027m^2$ and the measured heat release rate was 2.81 kW. The flow rates of water and gas (air and nitrogen) supplied to the twin-fluid nozzle were 156-483 g/min (~0.156-0.483 l/min) and 30-70 l/min, respectively. In the present experimental ranges, the high gas flow rate conditions led to the successful extinguishing of the pool fire. Under the low gas flow rate conditions in the extinguishment regime, the extinguishment time was long and the estimated water consumption was high. Under high gas flow rate conditions, however, the water flow rate conditions did not appear to have a great impact on the extinguishment time and estimated water consumption. On the other hand, in the present experimental ranges, the types of supply gas did not appear to affect the extinguishable flow rate condition, extinguishment time, and estimated water consumption. Finally, using the present experimental results with previous ones using a single-fluid nozzle, the water consumption of twin-fluid and single-fluid nozzles for extinguishing a 140 ml hexane pool fire were preliminarily compared and discussed.