DOI QR코드

DOI QR Code

Estimation of Process Window for the Determination of the Optimal Process Parameters in FDM Process

FDM 3D 프린터 최적 공정 변수 선정을 위한 공정 윈도우 평가법

  • Ahn, Il-Hyuk (School of Mechanical Engineering, Tongmyong University)
  • 안일혁 (동명대학교 기계공학부)
  • Received : 2018.06.12
  • Accepted : 2018.08.20
  • Published : 2018.08.28

Abstract

In 3D printing technologies, many parameters should be optimized for obtaining a part with higher quality. FDM (fused deposition modeling) printer has also diverse parameters to be optimized. Among them, it can be said that nozzle temperature and moving speed of nozzle are fundamental parameters. Thus, it should be preceded to know the optimal combination of the two parameters in the use of FDM 3D printer. In this paper, a new method is proposed to estimate the range of the stable combinations of the two parameters, based on the single line quality. The proposed method was verified by comparing the results between single line printing and multi-layered single line printing. Based on the comparison, it can be said that the proposed method is very meaningful in that it has a simple test approach and can be easily implemented. In addition, it is very helpful to provide the basic data for the optimization of process parameters.

3D 프린팅 기술에 있어서, 각각의 기술들은 고품질의 출력물을 얻기 위해서는 최적화해야 할 다양한 인자들을 가지고 있다. FDM (fused deposition modeling) 방식의 3D 프린터 또한 최적화해야 할 다수의 인자들이 있다. 그 중에서도 노즐 온도와 노즐 이송 속도는 가장 기본이 되는 인자라고 할 수 있다. 안정적인 출력이 가능한 두 인자의 조합을 찾는 것은 FDM 장비를 이용한 출력에 있어서 가장 먼저 선행되어야 할 일이다. 본 연구에서는 다양한 두 인자 조합에 따라 단일 라인 출력을 수행하였고, 얻어진 출력 결과물을 평가를 통하여 안정적인 출력이 가능한 범위를 선정하는 새로운 방법을 제시하였다. 제시한 방법을 통하여 평가한 안정적 조건 범위들을 동일 범위 조건 아래에서 다층 단일 라인 출력을 통하여 검증하였다. 그 결과, 단일 라인과 다층 단일 라인 출력이 동일한 안정적 범위를 보이고 있음을 확인 할 수 있었다. 이는 본 논문에서 제안한 단일 라인 평가법을 다층 출력의 안정성을 그대로 반영할 수 있음을 보여 준다. 이상의 결과들로 볼 때, 제안한 방법은 간단한 실험과 측정 방법을 이용하여 손쉽게 수행 될 수 있다는 점과 공정 변수들의 최적화를 위한 기본 데이터를 제공한다는 점에서도 그 의미를 찾을 수 있었다.

Keywords

References

  1. B. Stucker, I. Gibson, & D. Rosen. (2010). Additive Manufacturing Technologies. New York: Springer.
  2. T. Wohlers. (2014). Wohlers report 2018. Wohlers Associates Inc.
  3. S. J. Shin, C. K. Ahn & K. Y. Park, (2017), A case study on the application of new hand splint using 3D printing, Convergence Society for SMB, 7(2), 25-29.
  4. H. C. Kim, (2015). A study on the socio-economic impact of 3D printing, The Society of Digital Policy & Management, 13(7), 23-31.
  5. K. J. Sung & S. R. Kim. (2016), A study on the Curriculum by the Process of Actual use of 3D Printer - Focus on the College of Design, The Society of Digital Policy & Management, 14(6),. 381-393.
  6. K. S. Boparai, R. Singh & H. Singh. (2016). Development of rapid tooling using fused deposition modeling: a review. Rapid Prototyping Journal, 22(2), 281-299. https://doi.org/10.1108/RPJ-04-2014-0048
  7. T. J. Coogan & D. O. Kazmer. (2017). Bond and part strength in fused deposition modeling. Rapid Prototyping Journal, 23(2), 414-422. https://doi.org/10.1108/RPJ-03-2016-0050
  8. W. Han, M. A. Jafari, & K. Seyed. (2003). Process speeding up via deposition planning in fused deposition-based layered manufacturing processes. Rapid Prototyping Journal, 9(4), 212-218. https://doi.org/10.1108/13552540310489596
  9. D. Y. Chang & B. H. Huang.(2011). Studies on profile error and extruding aperture for the RP parts using the fused deposition modeling process. The International Journal of Advanced Manufacturing Technology, 53(9-12), 1027-1037. https://doi.org/10.1007/s00170-010-2882-1
  10. O. Mohamed, S. H. Masood & J. L. Bhowmik. (2015). Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Advances in Manufacturing, 3(1), 42-53. https://doi.org/10.1007/s40436-014-0097-7
  11. A. Peng, X. Xiao & R. Yue. (2014). Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. The International Journal of Advanced Manufacturing Technology, 73(1-4), 87-100. https://doi.org/10.1007/s00170-014-5796-5
  12. B. N. Turner, R. Strong & S. A. Gold. (2014). A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping Journal, 20(3), 192-204. https://doi.org/10.1108/RPJ-01-2013-0012
  13. B. N. Turner, R. Strong & S. A. Gold. (2015). A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping Journal, 21(3), 250-261. https://doi.org/10.1108/RPJ-02-2013-0017
  14. L. E. Criales, Y. M. Arisoy & T. Ozel. (2016). Sensitivity analysis of material and process parameters in finite element modeling of selective laser melting of Inconel 625. The International Journal of Advanced Manufacturing Technology, 86(9-12), 2653-2666. https://doi.org/10.1007/s00170-015-8329-y
  15. A. B. Spierings, M. Schoepf, R. Kiesel & K. Wegener. (2014). Optimization of SLM productivity by aligning 17-4PH material properties on part requirements. Rapid Prototyping Journal, 20(6), 444-448. https://doi.org/10.1108/RPJ-04-2013-0045
  16. M. Nikzad,S. H. Masood, & I. Sbarski. (2011). Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Materials & Design, 32(6), 3448-3456. https://doi.org/10.1016/j.matdes.2011.01.056
  17. A. Bellini, L. Shor & S. I. Guceri. (2005). New developments in fused deposition modeling of ceramics. Rapid Prototyping Journal, 11(4), 214-220. https://doi.org/10.1108/13552540510612901
  18. N. Venkataraman, S. Rangarajan, M. J. Matthewson, A. Safari, & Y. A. DanforthSC. (1999). Mechanical and rheological properties of feedstock material for fused deposition of ceramics and metals (FDC and FDMet) and their relationship to process performance. Solid Freeform Fabrication Proceedings, University of Texas at Austin, Austin, 351-360.
  19. O. Mohamed, S. H. Masood & J. L. Bhowmik. (2016). Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion. Measurement, 81, 174-196. https://doi.org/10.1016/j.measurement.2015.12.011