• Title/Summary/Keyword: 단위 연산

Search Result 419, Processing Time 0.026 seconds

Design of Efficient Gradient Orientation Bin and Weight Calculation Circuit for HOG Feature Calculation (HOG 특징 연산에 적용하기 위한 효율적인 기울기 방향 bin 및 가중치 연산 회로 설계)

  • Kim, Soojin;Cho, Kyeongsoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.66-72
    • /
    • 2014
  • Histogram of oriented gradient (HOG) feature is widely used in vision-based pedestrian detection. The interpolation is the most important technique in HOG feature calculation to provide high detection rate. In interpolation technique of HOG feature calculation, two nearest orientation bins to gradient orientation for each pixel and the corresponding weights are required. In this paper, therefore, an efficient gradient orientation bin and weight calculation circuit for HOG feature is proposed. In the proposed circuit, pre-calculated values are defined in tables to avoid the operations of tangent function and division, and the size of tables is minimized by utilizing the characteristics of tangent function and weights for each gradient orientation. Pipeline architecture is adopted to the proposed circuit to accelerate the processing speed, and orientation bins and the corresponding weights for each pixel are calculated in two clock cycles by applying efficient coarse and fine search schemes. Since the proposed circuit calculates gradient orientation for each pixel with the interval of $1^{\circ}$ and determines both orientation bins and weights required in interpolation technique, it can be utilized in HOG feature calculation to support interpolation technique to provide high detection rate.

Parallel Implementation of LSH Using SSE and AVX (SSE와 AVX를 활용한 LSH의 병렬 최적 구현)

  • Pack, Cheolhee;Kim, Hyun-il;Hong, Dowon;Seo, Changho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • Hash function is a cryptographic primitive which conduct authentication, signature and data integrity. Recently, Wang et al. found collision of standard hash function such as MD5, SHA-1. For that reason, National Security Research Institute in Korea suggests a secure structure and efficient hash function, LSH. LSH consists of three steps, initialization, compression, finalization and computes hash value using addition in modulo $2^W$, bit-wise substitution, word-wise substitution and bit-wise XOR. These operation is parallelizable because each step is independently conducted at the same time. In this paper, we analyse LSH structure and implement it over SIMD-SSE, AVX and demonstrate the superiority of LSH.

Software Effort Estimation based on Use Case Transaction (유스케이스 트랜잭션 기반의 소프트웨어 공수 예측 기법)

  • Lee, Sun-Kyung;Kang, Dong-Won;Bae, Doo-Hwan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.566-570
    • /
    • 2010
  • Use Case Point(UCP) is a measure of a software project size for software effort estimation based on use case. UCP measures the size of the software project based on the use case model. Because UCP is based on the use case model, it is intuitive and easy to obtain. Also, it does not require extra artifacts. On the other hand, UCP has some problems. UCP assumes every transaction has the same complexity. But, the number of operations and complexity of operations may affect complexity of transaction. In addition, UCP uses simple rating scale of complexity, but it may be inadequate for detailed estimates. To solve these problems, we suggest "Transaction Point(TP)", a size measure based on use case transaction. TP considers actors and operations in transaction. Complexity of transaction is based on the number of operations and complexity of operation, so it can support detailed estimation.

Improved Route Search Method Through the Operation Process of the Genetic Algorithm (유전 알고리즘의 연산처리를 통한 개선된 경로 탐색 기법)

  • Ji, Hong-il;Moon, Seok-hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.632-635
    • /
    • 2015
  • Proposal algorithm in this thesis introduced cells, units of router group, for distributed processing of previous genetic algorithm. This thesis presented ways to reduce search delay time of overall network through cell-based genetic algorithm. As a result of performance analysis comparing with existing genetic algorithm through experiments, the proposal algorithm was found superior in terms of costs and delay time. Furthermore, time for routing an alternative path was reduced in proposal algorithm, in case that a network was damaged in existing optimal path algorithm, Dijkstra algorithm, and the proposal algorithm was designed to route an alternative path faster than Dijkstra algorithm, as it has a 2nd shortest path in cells of the damaged network. The study showed that the proposal algorithm can support routing of alternative path, if Dijkstra algorithm is damaged in a network.

  • PDF

An Efficient Pedestrian Recognition Method based on PCA Reconstruction and HOG Feature Descriptor (PCA 복원과 HOG 특징 기술자 기반의 효율적인 보행자 인식 방법)

  • Kim, Cheol-Mun;Baek, Yeul-Min;Kim, Whoi-Yul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.162-170
    • /
    • 2013
  • In recent years, the interests and needs of the Pedestrian Protection System (PPS), which is mounted on the vehicle for the purpose of traffic safety improvement is increasing. In this paper, we propose a pedestrian candidate window extraction and unit cell histogram based HOG descriptor calculation methods. At pedestrian detection candidate windows extraction stage, the bright ratio of pedestrian and its circumference region, vertical edge projection, edge factor, and PCA reconstruction image are used. Dalal's HOG requires pixel based histogram calculation by Gaussian weights and trilinear interpolation on overlapping blocks, But our method performs Gaussian down-weight and computes histogram on a per-cell basis, and then the histogram is combined with the adjacent cell, so our method can be calculated faster than Dalal's method. Our PCA reconstruction error based pedestrian detection candidate window extraction method efficiently classifies background based on the difference between pedestrian's head and shoulder area. The proposed method improves detection speed compared to the conventional HOG just using image without any prior information from camera calibration or depth map obtained from stereo cameras.

A Morpheme-unit Korean Feature-Based Brammer (KFG) with the X-bar Theoretic Notion of Headedness (X-바 이론의 중심어 개념을 도입한 형태소 단위의 한국어 자질 기반 문법)

  • Park, So-Yeong;Hwang, Yeong-Suk;Im, Hae-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.10
    • /
    • pp.1247-1259
    • /
    • 1999
  • 본 논문에서는 한국어 문장형성원리를 간결하게 제시할 수 있도록 X-바 이론의 중심어 개념을 도입한 한국어 자질기반 문법을 제안한다. 제안하는 문법은 어절에 관계없이 나타나는 한국어의 문법현상을 명확히 설명할 수 있도록 어절 대신 형태소를 기본단위로 한다. 그리고, 한국어의 구문범주가 지닌 의미정보와 기능정보를 자질을 이용하여 독립적으로 표현하며, 구문범주간의 결합관계를 바탕으로 하는 자질연산을 수행하여 문장을 분석한다. 또한, 한국어의 부분자유어순과 생략현상에 대해 견고하게 분석할 수 있도록 자질연산을 이진결합중심의 CNF(Chomsky Normal Form)로 제한한다. 이렇게 구성된 한국어 자질기반 문법은 규칙을 직관적이고도 간단하게 기술하며, 한국어의 다양한 문장들을 견고하게 분석한다. SERI Test Suites 97과 신문기사에서 746문장을 추출하여 실험한 결과 94%~99%의 적용율을 보였다.Abstract In this paper, we propose a Korean feature-based grammar(KFG) which adopts the X-bar theoretic notion of headedness for a precise representation of Korean syntactic structure. In order to explain various language phenomena in a given sentence, we use not the word but the morpheme as a constituent unit of KFG. We use features manifesting both the syntactic information and the semantic information of Korean syntactic categories, and feature operations based on the association relationship between two categories. In addition, we restrict feature operations to CNF(Chomsky Normal Form) binary form, which provides a robust representation for properties in Korean such as the frequent ellipsis and the partial free-order. The KFG is intuitive, simple, and versatile in representing most Korean sentences. The experimental result shows 94%~99% coverage on 746 sentences extracted from SERI Test Suites 97 and newspaper sentences.

TID and SEL Testing on OP-Amp. of DC/DC Power Converter (DC/DC 컨버터용 OP-Amp.의 TID 및 SEL 실험)

  • Lho, Young Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.101-108
    • /
    • 2017
  • DC/DC switching power converters are commonly used to generate a regulated DC output voltage with high efficiency. The advanced DC/DC converter uses a PWM-IC with OP-Amp. (Operational Amplifier) to control a MOSFET (metal-oxide semiconductor field effect transistor), which is a switching component, efficiently. In this paper, it is shown that the electrical characteristics of OP-Amp. are affected by radiations of ${\gamma}$ rays using $^{60}Co$ for TID (Total Ionizing Dose) testing and 5 heavy ions for SEL (Single Event Latch-up) testing. TID testing on OP-Amp. is accomplished up to the total dose of 30 krad, and the cross section($cm^2$) versus LET($MeV/mg/cm^2$) in the OP-Amp. operation is evaluated SEL testing after implementation of the controller board.

Fast Content Adaptive Interpolation Algorithm Using One-Dimensional Patch-Based Learning (일차원 패치 학습을 이용한 고속 내용 기반 보간 기법)

  • Kang, Young-Uk;Jeong, Shin-Cheol;Song, Byung-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.54-63
    • /
    • 2011
  • This paper proposes a fast learning-based interpolation algorithm to up-scale an input low-resolution image into a high-resolution image. In conventional learning-based super-resolution, a certain relationship between low-resolution and high-resolution images is learned from various training images and a specific high frequency synthesis information is derived. And then, an arbitrary low resolution image can be super-resolved using the high frequency synthesis information. However, such super-resolution algorithms require heavy memory space to store huge synthesis information as well as significant computation due to two-dimensional matching process. In order to mitigate this problem, this paper presents one-dimensional patch-based learning and synthesis. So, we can noticeably reduce memory cost and computational complexity. Simulation results show that the proposed algorithm provides higher PSNR and SSIM of about 0.7dB and 0.01 on average, respectively than conventional bicubic interpolation algorithm.

Exploring fraction knowledge of the stage 3 students in proportion problem solving (단위 조정 3단계 학생의 비례 문제 해결에서 나타나는 분수 지식)

  • Lee, Jin Ah;Lee, Soo Jin
    • The Mathematical Education
    • /
    • v.61 no.1
    • /
    • pp.1-28
    • /
    • 2022
  • The purpose of this study is to explore how students' fractional knowledge is related to their solving of proportion problems. To this end, 28 clinical interviews with four middle-grade students, each lasting about 30~50 minutes, were carried out from May 2021 to August 2021. The present study focuses on two 7th grade students who exhibited their ability to coordinate three levels of units prior to solving whole number problems. Although the students showed interiorization of three levels of units in solving whole number problems, how they coordinated three levels of units were different in solving proportion problems depending on whether the problems required reasoning with whole numbers or fractions. The students could coordinate three levels of units prior to solving the problems involving whole numbers, they coordinated three levels of units in activity for the problems involving fractions. In particular, the ways the two students employed partitioning operations and how they coordinated quantitative unit structures were different in solving proportion problems involving improper fractions. The study contributes to the field by adding empirical data corroborating the hypotheses that students' ability to transform one three levels of units structure into another one may not only be related to their interiorization of recursive partitioning operations, but it is an important foundation for their construction of splitting operations for composite units.

Spatial Data Model of Feature-based Digital Map using UFID (UFID를 이용한 객체기반 수치지도 공간 데이터 모델)

  • Kim, Hyeong-Soo;Kim, Sang-Yeob;Lee, Yang-Koo;Seo, Sung-Bo;Park, Ki-Surk;Ryu, Keun-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.71-78
    • /
    • 2009
  • A demand on the spatial data management has been rapidly increased with the introduction and diffusion process of ITS, Telematics, and Wireless Sensor Network. And many different users use the digital map that offers various thematic spatial data. Spatial data for digital map can be managed by tile-based and feature-based data. The existing tile-based digital map management systems have difficult problems such as data construction, history management, and update data based on a spatial object. In order to solve these problems, we proposed the data model for feature-based digital map management system for representation of feature-based seamless map, history management, real-time update of spatial data, and analyzed the validity and utility of the proposed model.

  • PDF