• Title/Summary/Keyword: 단백질 세포내 위치

Search Result 106, Processing Time 0.022 seconds

물에 의한 손해를 막읍시다

  • 백인종
    • KOREAN POULTRY JOURNAL
    • /
    • v.4 no.9 s.35
    • /
    • pp.96-99
    • /
    • 1972
  • 일찍이 동물은 체내에서 지방과 반 이상의 단백질을 잃고도 살 수 있으나 물은 1/10만 잃어도 생명을 잃게된다는 것을 발표하여 물의 중요성을 역설한 바있다. 물은 단일요소로서는 가장 중요한 위치를 확보하고 있다. 즉 물은 성장한 동물의 50$\~$75$\%$ 신생한 동물의 90$\~$95$\%$를 차지하고 계란의 65$\%$가 물로 되어있다. 물은 체내에서도 중요한 역할을 하고 있다. 물은 가장 이상적인 분산배지로서 여러가지 세포내의 반응을 촉진한다. 물은 체내에서 발생한 열을 흡수하여 체온의 상승을 막고 증발에 의해서 체온을 조절한다. 물은 영양소를 적절히 희석하여 소화를 돕고 영양소와 노폐물의 수송 영양소의 체내 분해 합성을 돕는다. 또 물은 체액을 만들어 조직및 기관의 관절부에서 기름칠하는 역할을 한다.

  • PDF

Site-specific Dye-labeling of the Bacterial Cell Surface by Bioconjugation and Self-assembly (바이오접합과 자가결합을 이용한 박테리아 세포막의 위치 특이적 형광 표지)

  • Yang, I Ji;Lim, Sung In
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.398-406
    • /
    • 2022
  • The outer membrane of Gram-negative bacteria is the outermost layer of cellular environment in which numerous biophysical and biochemical processes are in action sustaining viability. Advances in cell engineering enable modification of bacterial genetic information that subsequently alters membrane physiology to adapt bacteria to specific purposes. Surface display of a functional molecule on the outer membranes is one of strategies that directs host cells to respond to a specific extracellular matter or stimulus. While intracellular expression of a functional peptide or protein fused to a membrane-anchoring motif is commonly practiced for surface display, the method is not readily applicable to exogenous or large proteins inexpressible in bacteria. Chemical conjugation at reactive groups naturally occurring on the membrane might be an alternative, but often compromises fitness due to non-specific modification of essential components. Herein, we demonstrated two distinct approaches that enable site-specific decoration of the outer membrane with a fluorescent agent in Escherichia coli. An unnatural amino acid genetically incorporated in a surface-exposed peptide could act as a chemoselective handle for bioorthogonal dye labeling. A surface-displayed α-helical domain originating from a part of a selected heterodimeric coiled-coil complex could recruit and anchor a green fluorescent protein tagged with a complementary α-helical domain to the membrane surface in a site- and hetero-specific manner. These methods hold a promise as on-demand tools to confer new functionalities on the bacterial membranes.

Effects of spNab2 Deletion and Over-Expression on mRNA Export (분열효모에서 spNab2 유전자의 결실돌연변이 및 과발현에 대한 분석)

  • Yoon, Jin-Ho
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.300-305
    • /
    • 2009
  • We constructed the deletion mutants of fission yeast Schizosaccharomyces pombe spNab2 gene that is homologous to poly(A)-binding protein NAB2 in budding yeast Saccharomyces cerevisiae, which plays crucial roles in mRNA 3' end formation and mRNA export from nucleus into the cytoplasm. A null mutant in an $h^+$/ $h^+$ diploid strain was constructed by replacing the spNab2-coding region with an $ura4^+$ gene using one-step gene disruption method. Tetrad analysis showed that the spNab2 is not essential for vegetative growth and mRNA export. However, over-expression of spNab2 cause the severe growth defects and intensive accumulation of poly(A) RNA in the nucleus. Also, the spNab2-GFP fusions were localized mainly in the nucleus. These results suggest that spNab2 is also involved in mRNA export out of the nucleus.

Molecular Cloning and Expression of the Novel Attacin-Like Antibacterial Protein Gene Isolated from the Bombyx mori (집누에로부터 새로운 attactin 유산 항세균성 펩타이드 유전자의 분리 및 발현)

  • 윤은영;김상현;강석우;진병래;김근영;김호락;한명세;강석권
    • Korean journal of applied entomology
    • /
    • v.36 no.4
    • /
    • pp.331-340
    • /
    • 1997
  • Hyalophora cecropia attacin-like antibacterial gene was isolated from Bombyx mori induced with nonpathogenic bacteria. It was expressed in Spodopfera frugiperda 9 (Sf9 cells using baculovirus expression vector system (BEVS), and examined its antibacterial activity. With a cDNA library constructed from fifthinstar B. mori injected with Escherichia coli(4 X IOhcellsllarva), differential screening was performed using naive and induced mRNA probes. BmInc6 clone was screened by partial nucleotide sequence and GenBank database analysis. A complete nucleotide sequence of Bmlnc6 cDNA was determined (GenBank, AF005384). Its insert size was 852 bp and had open reading frame that started translation at position 35 and stopped at 679. And its putative polyadenylational signal existed at 812 bp. The number of amino acid deduced from Bmlnc6 cDNA was 214 and hydropathy analysis showed that this peptide was hydrophilic. This peptide deduced by BmInc6 was named nuecin. When the nuecin gene was expressed in Sf9 cells using BEVS, about 950 bp of the transcripts was detected. In addition, SDS-PAGE analysis showed that the molecular weights of intracellular expressed protein and the mature protein secreted to culture media were approximately 23 and 20 kDa, respectively. The antibacterial activity of nuecin against E. coli and Bacillus subtilis was significantly high, demonstrating that nuecin had a wider antibacterial spectrum with gram negative and positive bacteria than attacin.

  • PDF

Subcellular Localization of Novel Stress Protein VISP (새로운 스트레스 단백질인 VISP의 세포내 위치)

  • Moon, Chang-Hoon;Yoon, Won-Joon;Ko, Myoung-Seok;Kim, Hyun-Ju;Park, Jeong-Woo
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.271-276
    • /
    • 2006
  • Previously we demonstrated that virus-inducible stress protein (VISP) is induced in fish cells by the infection of a fish rhabdovirus. In this paper, we investigated the subcellular localization of the VISP and determined the region of VISP responsible for the subcellular localization. The CHSE-214 cells were stained with monoclonal antibody raised against VISP and observed with confocal microscope to detect the endogenous VISP. The results showed that the VISP localizes to the perinuclear region as spots. A plasmid expressing VISP fused to enhanced green fluorescent protein (EGFP) was constructed. The transient expression of full-length VISP fused to EGFP in CHSE-214 cells confirmed the spot formation of the VISP at perinuclear region. To determine the region responsible for the perinuclear localization of the VISP, we constructed a series of deletion mutants and, by using these deletion mutants, we found that C-terminal region of the VISP (aa 612-710) is essential for the perinuclear distribution of VISP and that this region contained nuclear receptor binding motif (691-TLTSLLL-697). Our results suggest that VISP localizes to the perinuclear region and C-terminal regions are important for this localization. Further studies on the role of the perinuclear localization of VISP in IHNV growth mali reveal the novel mechanism of IHNV pathogenecity.

Automated Bacterial Cell Counting Method in a Droplet Using ImageJ (이미지 분석 프로그램을 이용한 액적 내 세포 계수 방법)

  • Jingyeong Kim;Jae Seong Kim;Chang-Soo Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.247-257
    • /
    • 2023
  • Precise counting of cell number stands in important position within clinical and research laboratories. Conventional methods such as hemocytometer, migration/invasion assay, or automated cell counters have limited in analytical time, cost, and accuracy., which needs an alternative way with time-efficient in-situ approach to broaden the application avenue. Here, we present simple coding-based cell counting method using image analysis tool, freely available image software (ImageJ). Firstly, we encapsulated RFP-expressing bacteria in a droplet using microfluidic device and automatically performed fluorescence image-based analysis for the quantification of cell numbers. Also, time-lapse images were captured for tracking the change of cell numbers in a droplet containing different concentrations of antibiotics. This study confirms that our approach is approximately 15 times faster and provides more accurate number of cells in a droplet than the external analysis program method. We envision that it can be used to the development of high-throughput image-based cell counting analysis.

Muskelin Interacts with Multi-PDZ Domain Protein 1 (MUPP1) through the PDZ Domain (Muskelin과 multi-PDZ domain protein 1 (MUPP1) 단백질의 PDZ 도메인을 통한 결합)

  • Jang, Won Hee;Jeong, Young Joo;Choi, Sun Hee;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.594-600
    • /
    • 2015
  • Protein-protein interactions have a critical role in the regulation of many cellular functions. Postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domain is one of domains that mediate protein-protein interactions. PDZ domains typically bind to the specific motif at the carboxyl (C)-terminal end of partner proteins. Multi-PDZ domain protein 1 (MUPP1), which has 13 PDZ domains, serves a scaffolding function for structure proteins and signaling proteins, but the cellular function of MUPP1 has not been fully elucidated. We used the yeast two-hybrid system to identify proteins that interact with PDZ domains of MUPP1. We found an interaction between MUPP1 and muskelin. Muskelin was recently identified as a GABAA receptor (GABAAR) α1 subunit binding protein and known to have a role in receptor endocytosis and degradation. Muskelin bound to the 3rd PDZ domain, but not to other PDZ domains of MUPP1. The C-terminal end of muskelin was essential for the interaction with MUPP1 in the yeast two-hybrid assay. When co-expressed in HEK-293T cells, muskelin but not the C-terminal deleted muskelin was co-immunoprecipitated with MUPP1. In addition, MUPP1 co-localized with muskelin at the same subcellular region in cells. These findings collectively suggest that MUPP1 or its interacting proteins could modulate GABAAR trafficking and turnover through the interaction with muskelin.

Identification of Secretion Signals of Target Proteins in Salmonella enterica serovar Typhimurium and Construction of Secretion Vector using this Signal (Salmonella enterica serovar Typhimurium에서 Type III 분비장치의 표적단백질들의 분비신호 확인 및 Type III 분비장치를 이용한 Secretion Vector의 개발)

  • Choi, Hyuk-Jin;Eom, Joon-Ho;Cho, Jung-Ah;Lee, Sun;Lee, Kyoung-Mi;Lee, In-Soo;Park, Yong-Keun
    • Korean Journal of Microbiology
    • /
    • v.36 no.4
    • /
    • pp.254-258
    • /
    • 2000
  • Invasion process of bacterial cell into intestinal epithelium is important in Salmonella infection. The invasion is induced by the proteins secreted by type III secretion appratus of Salmonella. It has been known that the proteins do not have N-terminal signal peptide existing in general secreted proteins. Recent studies on Yersinia reported that secretion signal of type III appratus may lie on 5'end secondary structure of mRNA of secreted protein. In this study, we constructed translational fusion of ompR and sopE, encoding type III secretion protein of Salmonella, and observed secretion of the fusion protein for investigating the secretion signal of Salmonella type III appratus. The sopE DNA fragments of the translational fusion contain the region of promoter and from start code to tenth or to fifth code. These translational fusions indicate that type III secretion signal of Salmonella is located on 5'end of mRNA encoding secreted protein. We constructed prototype of secretion vector using this signal to produce useful foreign protein.

  • PDF

CUEDC2, CUE Domain Containing Protein 2, Associates with Kinesin-1 by Binding to the C-Terminus of KIF5A (CUE 도메인 포함 단백질인 CUEDC2는 KIF5A의 C-말단과 결합을 통하여 Kinesin-1와 결합)

  • Myoung Hun Kim;Se Young Pyo;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Mooseong Kim;Jung Goo Lee;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.868-875
    • /
    • 2023
  • Kinesin-1 is a motor protein identified as the first member of the kinesin superfamily (KIF), which plays a role in intracellular cargo transport by acting as microtubule-dependent motor proteins within cells. Kinesin-1 consists of two heavy chains (KHCs, also known as KIF5s) and two light chains (KLCs). The 93 amino acids in the carboxyl (C)-terminal tail region of KIF5A are not homologous to the C-terminal tail region of KIF5B or the C-terminal tail region of KIF5C. In this study, we used a yeast two-hybrid screen to identify the binding proteins that interacted with the C-terminal region of KIF5A. We found an association between KIF5A and CUE domain containing 2 (CUEDC2), which is proposed to function as an adaptor protein involved in ubiquitination pathways and protein trafficking. CUEDC2 bound to the C-terminal region of KIF5A and did not interact with KIF5B (the motor of kinesin-1), KIF3A (the motor of kinesin-2), or kinesin light chain 1 (KLC1). KIF5A specifically bound to the C-terminal region of CUEDC2. Furthermore, KIF5A did not interact with another isoform: CUEDC1. In addition, glutathione S-transferase (GST) pull-downs showed that KIF5A directly bound GST-CUEDC2 but did not interact with GST-CUEDC1 and GST alone. When myc-KIF5A and EGFP-CUEDC2 were co-expressed in HEK-293T cells, CUEDC2 co-immunoprecipitated with kinesin-1, and myc-KIF5A and FLAG-CUEDC2 colocalized in the cells. These results suggest that in intracellular cargo transport by kinesin-1, CUEDC2 serves as an adaptor protein connecting kinesin-1 and cargo by binding to KIF5A.

Mouse Embryonic Stem Cell Uptakes of Buforin 2 and pEP-1 Conjugated with EGFP (생쥐 배아 줄기세포의 Buforin 2 및 pEP-1에 결합된 EGFP의 세포 내 수송)

  • Jung, Su-Hyun;Park, Seong-Soon;Lim, Hyun-Jung;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.11 no.2
    • /
    • pp.111-119
    • /
    • 2007
  • Differentiation of cells can be induced through modulation of endogenous regulators using exogenous factors. Useful transfection systems to transport a specific exogenous regulator into cell have been tried but still there are many obstacles to overcome. In this study, we examined the transfection efficiency of cell permeable peptides (CPPs) in mouse embryonic stem cell under the various conditions. To identify the CPP-mediated translocation of a protein, we employed recombinant CPP-enhanced green fluorescent protein (EGFP). Viability of R1 cells was different between experimental groups depending on the kind of CPP and the concentration of CPP-EGFP. Translocation of CPP-EGFPs into the R1 cells was not detected until 30 min after CPP-EGFPs treatment in all groups. After 1 hr, translocation of pEP-1-EGFP-N was detected, but it could not be detected in the other group. Transfection of pEP-1EGFP-N was independent on its concentration. The time course did not show saturation even after 24 hr in pEP-1-EGFP-N. These results showed that the permeability depended on the kind of CPP and the location of His-tag in the case of examined CPPs, and did not need biological energy. On summary, the efficiency of transfection of CPP-EGFP depends on the CPP sequences but the culture time is not a key factor in transfection for the mouse embryonic stem cell. For the future studies to improve the efficiency of translocation of protein into embryonic stem cells, it is needed to develop modified CPP or mediator. The studies would be very useful to induce the differentiation of embryonic stem cells.

  • PDF