DOI QR코드

DOI QR Code

Site-specific Dye-labeling of the Bacterial Cell Surface by Bioconjugation and Self-assembly

바이오접합과 자가결합을 이용한 박테리아 세포막의 위치 특이적 형광 표지

  • Yang, I Ji (Department of Chemical Engineering, Pukyong National University) ;
  • Lim, Sung In (Department of Chemical Engineering, Pukyong National University)
  • 양이지 (부경대학교 화학공학과) ;
  • 임성인 (부경대학교 화학공학과)
  • Received : 2021.12.14
  • Accepted : 2022.02.03
  • Published : 2022.08.01

Abstract

The outer membrane of Gram-negative bacteria is the outermost layer of cellular environment in which numerous biophysical and biochemical processes are in action sustaining viability. Advances in cell engineering enable modification of bacterial genetic information that subsequently alters membrane physiology to adapt bacteria to specific purposes. Surface display of a functional molecule on the outer membranes is one of strategies that directs host cells to respond to a specific extracellular matter or stimulus. While intracellular expression of a functional peptide or protein fused to a membrane-anchoring motif is commonly practiced for surface display, the method is not readily applicable to exogenous or large proteins inexpressible in bacteria. Chemical conjugation at reactive groups naturally occurring on the membrane might be an alternative, but often compromises fitness due to non-specific modification of essential components. Herein, we demonstrated two distinct approaches that enable site-specific decoration of the outer membrane with a fluorescent agent in Escherichia coli. An unnatural amino acid genetically incorporated in a surface-exposed peptide could act as a chemoselective handle for bioorthogonal dye labeling. A surface-displayed α-helical domain originating from a part of a selected heterodimeric coiled-coil complex could recruit and anchor a green fluorescent protein tagged with a complementary α-helical domain to the membrane surface in a site- and hetero-specific manner. These methods hold a promise as on-demand tools to confer new functionalities on the bacterial membranes.

그람음성균의 외막은 수많은 생물물리학적 및 생화학적 과정이 작용하여 생존력을 유지하도록 설계되어 있는 세포환경의 가장 바깥 층이다. 세포공학의 발전으로 인해 박테리아의 막 환경을 변경하는 등 유전정보를 원하는 대로 조작할 수 있게 되었고 이는 박테리아를 특정 목적에 적용시킬 수 있게 하였다. 그중 기능성 분자를 박테리아 외막에 표지하는 세포 표면공학은 숙주세포가 특정 외부물질이나 자극에 반응하도록 유도하는 전략 중 하나이다. 기능성 펩타이드 또는 단백질을 세포 표면에 표지하기 위한 방법으로 막 고정 모티프를 융합한 후 세포 내에서 발현하는 방법이 일반적으로 사용되고 있지만 이는 박테리아 시스템에서 발현할 수 없는 외인성 단백질이나 크기가 큰 단백질에는 적용할 수 없다는 한계점이 있다. 박테리아 외막의 구성요소에 자연적으로 존재하는 반응성 그룹과 기능성 물질을 화학접합하는 방법도 있으나 필수 구성 요소의 비특이적 변형으로 인해 세포의 생장이 저해되는 경우가 많다. 본 연구에서는 비천연아미노산 또는 자가결합 도메인을 사용해 대장균의 세포 표면을 부위 특이적으로 형광 표지하는 두 가지의 접근법을 수행하였다. 첫 번째 접근법은 화학선택적 반응성을 지닌 비천연아미노산이 삽입된 펩타이드를 대장균 표면에 발현하여 위치 특이적으로 형광염료를 접합시키는 방법이다. 두 번째 접근법은 자가결합능력을 지닌 이종 이량체 코일-코일에서 유래된 α-나선 도메인을 대장균 외막에 발현하고 녹색 형광 단백질이 융합된 상보적인 α-나선 도메인을 막 표면에 특이적으로 고정하는 방법이다. 제시된 방법들은 위치와 시간이 제어된 방식으로 박테리아 외막에 새로운 기능을 부여하는 방법론으로서 유용하다.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었음.

References

  1. Read, T. D. and Massey, R. C., "Characterizing the Genetic Basis of Bacterial Phenotypes Using Genome-Wide Association Studies: A New Direction for Bacteriology," Genome Med., 6(11), 109(2014). https://doi.org/10.1186/s13073-014-0109-z
  2. Qing, G., Gong, N., Chen, X., Chen, J., Zhang, H., Wang, Y., Wang, R., Zhang, S., Zhang, Z., Zhao, X., Luo, Y. and Liang, X.-J., "Natural and Engineered Bacterial Outer Membrane Vesicles," Biophys. Rep., 5(4), 184-198(2019). https://doi.org/10.1007/s41048-019-00095-6
  3. van Bloois, E., Winter, R. T., Kolmar, H. and Fraaije, M. W., "Decorating Microbes: Surface Display of Proteins on Escherichia Coli," Trends Biotechnol., 29(2), 79-86(2011). https://doi.org/10.1016/j.tibtech.2010.11.003
  4. Kechagia, J. Z., Ivaska, J. and Roca-Cusachs, P., "Integrins as Biomechanical Sensors of the Microenvironment," Nat. Rev. Mol. Cell Biol., 20(8), 457-473(2019). https://doi.org/10.1038/s41580-019-0134-2
  5. Patel, D. S., Qi, Y. and Im, W., "Modeling and Simulation of Bacterial Outer Membranes and Interactions with Membrane Proteins," Curr. Opin. Struct. Biol., 43, 131-140(2017). https://doi.org/10.1016/j.sbi.2017.01.003
  6. Varki, A., "Biological Roles of Glycans," Glycobiology, 27(1), 3-49(2017). https://doi.org/10.1093/glycob/cww086
  7. Bond, P. J. and Sansom, M. S. P., "The Simulation Approach to Bacterial Outer Membrane Proteins (Review)," Mol. Membr. Biol., 21(3), 151-161(2004). https://doi.org/10.1080/0968760410001699169
  8. Sousa, C., Cebolla, A. and de Lorenzo, V., "Enhanced Metalloadsorption of Bacterial Cells Displaying Poly-His Peptides," Nat. Biotechnol., 14(8), 1017-1020(1996). https://doi.org/10.1038/nbt0896-1017
  9. Jo, J.-H., Han, C.-W., Kim, S.-H., Kwon, H.-J. and Lee, H.-H., "Surface Display Expression of Bacillus Licheniformis Lipase in Escherichia Coli Using Lpp'OmpA Chimera," J. Microbiol., 52(10), 856-862(2014). https://doi.org/10.1007/s12275-014-4217-7
  10. Jose, J., "Autodisplay: Efficient Bacterial Surface Display of Recombinant Proteins," Appl. Microbiol. Biotechnol., 69(6), 607-614(2006). https://doi.org/10.1007/s00253-005-0227-z
  11. Nicchi, S., Giuliani, M., Giusti, F., Pancotto, L., Maione, D., Delany, I., Galeotti, C. L. and Brettoni, C., "Decorating the Surface of Escherichia Coli with Bacterial Lipoproteins: A Comparative Analysis of Different Display Systems," Microb. Cell Fact., 20(1), 33(2021). https://doi.org/10.1186/s12934-021-01528-z
  12. Kang, S.-M., Rhee, J.-K., Kim, E.-J., Han, K.-H. and Oh, J.-W., "Bacterial Cell Surface Display for Epitope Mapping of Hepatitis C Virus Core Antigen," FEMS Microbiol. Lett., 226(2), 347-353(2003). https://doi.org/10.1016/S0378-1097(03)00623-2
  13. Fasehee, H., Rostami, A., Ramezani, F. and Ahmadian, G., "Engineering E. Coli Cell Surface in Order to Develop a One-Step Purification Method for Recombinant Proteins," AMB Express, 8(1), 107(2018). https://doi.org/10.1186/s13568-018-0638-8
  14. Weon, B., H, W. C., Jan, K., Ashok, M. and Wilfred, C., "Enhanced Mercury Biosorption by Bacterial Cells with Surface-Displayed MerR," Appl. Environ. Microbiol., 69(6), 3176-3180(2003). https://doi.org/10.1128/AEM.69.6.3176-3180.2003
  15. Bi, X., Yin, J., Chen Guanbang, A. and Liu, C.-F., "Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering," Chem. - Eur. J., 24(32), 8042-8050(2018). https://doi.org/10.1002/chem.201705049
  16. Hsiao, S. C., Shum, B. J., Onoe, H., Douglas, E. S., Gartner, Z. J., Mathies, R. A., Bertozzi, C. R. and Francis, M. B., "Direct Cell Surface Modification with DNA for the Capture of Primary Cells and the Investigation of Myotube Formation on Defined Patterns," Langmuir, 25(12), 6985-6991(2009). https://doi.org/10.1021/la900150n
  17. Bi, X., Yin, J., Chen Guanbang, A. and Liu, C.-F., "Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering," Chem. - Eur. J., 24(32), 8042-8050(2018). https://doi.org/10.1002/chem.201705049
  18. Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C. and Schultz, P. G., "A General Method for Site-Specific Incorporation of Unnatural Amino Acids into Proteins," Science, 244(4901), 182-188(1989). https://doi.org/10.1126/science.2649980
  19. Kobayashi, T., Nureki, O., Ishitani, R., Yaremchuk, A., Tukalo, M., Cusack, S., Sakamoto, K. and Yokoyama, S., "Structural Basis for Orthogonal TRNA Specificities of Tyrosyl-TRNA Synthetases for Genetic Code Expansion," Nat. Struct. Mol. Biol., 10(6), 425-432(2003). https://doi.org/10.1038/nsb934
  20. Wang, L., Xie, J., Deniz, A. A. and Schultz, P. G., "Unnatural Amino Acid Mutagenesis of Green Fluorescent Protein," J. Org. Chem., 68(1), 174-176(2003). https://doi.org/10.1021/jo026570u
  21. Mehl, R. A., Anderson, J. C., Santoro, S. W., Wang, L., Martin, A. B., King, D. S., Horn, D. M. and Schultz, P. G., "Generation of a Bacterium with a 21 Amino Acid Genetic Code," J. Am. Chem. Soc., 125(4), 935-939(2003). https://doi.org/10.1021/ja0284153
  22. Utterstrom, J., Naeimipour, S., Selegard, R. and Aili, D., "Coiled Coil-Based Therapeutics and Drug Delivery Systems," Adv. Drug Delivery Rev., 170, 26-43(2021). https://doi.org/10.1016/j.addr.2020.12.012
  23. Walavalkar, N. M., Gordon, N. and Williams, D. C., "Unique Features of the Anti-Parallel, Heterodimeric Coiled-Coil Interaction between Methyl-Cytosine Binding Domain 2 (MBD2) Homologues and GATA Zinc Finger Domain Containing 2A (GATAD2A/P66α)*," J. Biol. Chem., 288(5), 3419-3427(2013). https://doi.org/10.1074/jbc.M112.431346
  24. Gnanapragasam, M. N., Scarsdale, J. N., Amaya, M. L., Webb, H. D., Desai, M. A., Walavalkar, N. M., Wang, S. Z., Zu Zhu, S., Ginder, G. D. and Williams, D. C., "P66α-MBD2 Coiled-Coil Interaction and Recruitment of Mi-2 Are Critical for Globin Gene Silencing by the MBD2-NuRD Complex," Proc. Natl. Acad. Sci. U.S.A., 108(18), 7487(2011). https://doi.org/10.1073/pnas.1015341108
  25. Kruis, I. C., Lowik, D. W. P. M., Boelens, W. C., van Hest, J. C. M. and Pruijn, G. J. M., "An Integrated, Peptide-Based Approach to Site-Specific Protein Immobilization for Detection of Biomolecular Interactions," Analyst, 141(18), 5321-5328(2016). https://doi.org/10.1039/c6an00154h
  26. Paloni, J. M. and Olsen, B. D., "Coiled-Coil Domains for SelfAssembly and Sensitivity Enhancement of Protein-Polymer Conjugate Biosensors," ACS Appl. Polym. Mater., 2(3), 1114-1123(2020). https://doi.org/10.1021/acsapm.9b01061
  27. Ou, B., Yang, Y., Tham, W. L., Chen, L., Guo, J. and Zhu, G., "Genetic Engineering of Probiotic Escherichia Coli Nissle 1917 for Clinical Application," Appl. Microbiol. Biotechnol., 100(20), 8693-8699(2016). https://doi.org/10.1007/s00253-016-7829-5
  28. Chin, J. W., Santoro, S. W., Martin, A. B., King, D. S., Wang, L. and Schultz, P. G., "Addition of P-Azido-l-Phenylalanine to the Genetic Code of Escherichia Coli," J. Am. Chem. Soc., 124(31), 9026-9027(2002). https://doi.org/10.1021/ja027007w
  29. Lutz, J.-F., "1,3-Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science," Angew. Chem., Int. Ed., 46(7), 1018-1025(2007). https://doi.org/10.1002/anie.200604050
  30. Lim, S. I., Hahn, Y. S. and Kwon, I., "Site-Specific Albumination of a Therapeutic Protein with Multi-Subunit to Prolong Activity in Vivo," J. Controlled Release, 207, 93-100(2015). https://doi.org/10.1016/j.jconrel.2015.04.004
  31. Lim, S. I., Mizuta, Y., Takasu, A., Hahn, Y. S., Kim, Y. H. and Kwon, I., "Site-Specific Fatty Acid-Conjugation to Prolong Protein Half-Life in Vivo," J. Controlled Release, 170(2), 219-225(2013). https://doi.org/10.1016/j.jconrel.2013.05.023
  32. Maruani, A., Smith, M. E. B., Miranda, E., Chester, K. A., Chudasama, V. and Caddick, S., "A Plug-and-Play Approach to Antibody-Based Therapeutics via a Chemoselective Dual Click Strategy," Nat. Commun., 6(1), 6645(2015). https://doi.org/10.1038/ncomms7645
  33. Park, S.-H., Zheng, J. H., Nguyen, V. H., Jiang, S.-N., Kim, D.-Y., Szardenings, M., Min, J. H., Hong, Y., Choy, H. E. and Min, J.-J., "RGD Peptide Cell-Surface Display Enhances the Targeting and Therapeutic Efficacy of Attenuated Salmonella-Mediated Cancer Therapy," Theranostics, 6(10), 1672-1682(2016). https://doi.org/10.7150/thno.16135
  34. Ali, S., Kjeken, R., Niederlaender, C., Markey, G. and Saunders, T. S., "The European Medicines Agency Review of Kymriah (Tisagenlecleucel) for the Treatment of Acute Lymphoblastic Leukemia and Diffuse Large B-Cell Lymphoma," Oncologist, 25(2), e321-e327(2020). https://doi.org/10.1634/theoncologist.2019-0233