• Title/Summary/Keyword: 다목적 유전알고리듬

Search Result 10, Processing Time 0.023 seconds

A Study on Strengthened Genetic Algorithm for Multi-Modal and Multiobjective Optimization (강화된 유전 알고리듬을 이용한 다극 및 다목적 최적화에 관한 연구)

  • Lee Won-Bo;Park Seong-Jun;Yoon En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 1997
  • An optimization system, APROGA II using genetic algorithm, was developed to solve multi-modal and multiobjective problems. To begin with, Multi-Niche Crowding(MNC) algorithm was used for multi-modal optimization problem. Secondly, a new algorithm was suggested for multiobjective optimization problem. Pareto dominance tournaments and Sharing on the non-dominated frontier was applied to it to obtain multiple objectives. APROGA II uses these two algorithms and the system has three search engines(previous APROGA search engine, multi-modal search engine and multiobjective search engine). Besides, this system can handle binary and discrete variables. And the validity of APROGA II was proved by solving several test functions and case study problems successfully.

  • PDF

System Decomposition Technique using Multiple Objective Genetic Algorithm (다목적 유전알고리듬을 이용한 시스템 분해 기법)

  • Park, Hyung-Wook;Kim, Min-Soo;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.170-175
    • /
    • 2001
  • The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to determine the best order of the processes within these subcycles to reduce design cycle time and cost. This is accomplished by decomposing large multidisciplinary problems into several multidisciplinary analysis subsystems (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problems to improve design efficiency by using the multiple objective genetic algorithm (MOGA), and a sample test case is presented to show the effects of optimizing the sequence with MOGA.

  • PDF

A System Decomposition Technique Using A Multi-Objective Genetic Algorithm (다목적 유전알고리듬을 이용한 시스템 분해 기법)

  • Park, Hyung-Wook;Kim, Min-Soo;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.499-506
    • /
    • 2003
  • The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to determine the best order of the processes within these subcycles to reduce design cycle time and cost. This is accomplished by decomposing large multidisciplinary problems into several sub design structure matrices (DSMs) and processing them in parallel This paper proposes a new method for parallel decomposition of multidisciplinary problems to improve design efficiency by using the multi-objective genetic algorithm and two sample test cases are presented to show the effect of the suggested decomposition method.

Multi-Objective Optimum Shape Design of Rotor-Bearing System with Dynamic Constraints Using Immune-Genetic Algorithm (면역.유전 알고리듬을 이용한 로터 베어링시스템의 다목적 형상최적설계)

  • Choe, Byeong-Geun;Yang, Bo-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1661-1672
    • /
    • 2000
  • An immune system has powerful abilities such as memory, recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this pap er, the combined optimization algorithm (Immune- Genetic Algorithm: IGA) is proposed for multi-optimization problems by introducing the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The optimizing ability of the proposed combined algorithm is identified by comparing the result of optimization with simple genetic algorithm for two dimensional multi-peak function which have many local optimums. Also the new combined algorithm is applied to minimize the total weight of the shaft and the transmitted forces at the bearings. The inner diameter oil the shaft and the bearing stiffness are chosen as the design variables. The dynamic characteristics are determined by applying the generalized FEM. The results show that the combined algorithm and reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic conatriants.

유전적 알고리듬을 이용한 최적 구조 설계

  • 김기화
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.34-38
    • /
    • 1994
  • 본 연구에서는 Genetic Algorithm을 사용하여 상기의 문제를 해결하고자 한다. 특히 다목적 함수 최적화에는 한 번의 최적화 계산으로 Pareto최적해 집합이 동시에 구해지는 새로운 방법인 MOGA(Multicriteria Optimization by Genetic Algorithm)을 개발하였다. 먼저 Genetic Alorithm의 기본 특성에 대해 살펴보고, 다양한 종류의 문제를 통해 Genetic Algorithm의 유용 성을 검토하였다.

  • PDF

Genetic Algorithm Based Continuous-Discrete Optimization and Multi-objective Sequential Design Method for the Gear Drive Design (기어장치 설계를 위한 유전알고리듬 기반 연속-이산공간 최적화 및 다목적함수 순차적 설계 방법)

  • Lee, Joung-Sang;Chong, Tae-Hyong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.205-210
    • /
    • 2007
  • The integration method of binary and real encoding in genetic algorithm is proposed to deal with design variables of various types in gear drive design. The method is applied to optimum design of multi-stage gear drive. Integer and Discrete type design variables represent the number of teeth and module, and continuous type design variables represent face width, helix angle and addendum modification factor etc. The proposed genetic algorithm is applied for the gear ratio optimization and the volume optimization(minimization) of multi-stage geared motor which is used in field. In result, the proposed design optimization method shows an effectiveness in optimum design process and the new design has a better results compared with the existing design.

Mixed-Model Sequencing Using Genetic Algorithms with Multiple Evaluation Criteria (다목적 유전 알고리듬을 이용한 혼합모델 조립라인의 최적 생산순서계획)

  • Kim, Yearn-Min;Kim, Young-Jin
    • IE interfaces
    • /
    • v.13 no.2
    • /
    • pp.204-210
    • /
    • 2000
  • This paper deals with the problem of mixed-model sequencing on an assembly line. In this sequencing problem we want to minimize the risk of the conveyor stoppage and the total utility work. This paper applies genetic algorithm to solve the mixed-model sequencing problem which is formulated as an integer programming. The solution we get from this algorithm is compared with the solution of Tsai(1995)'s.

  • PDF

최적설계에서 설계전문가시스템까지

  • 한순흥
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.31 no.2
    • /
    • pp.25-27
    • /
    • 1994
  • 최적설계에 대한 두번의 특집을 통해 최적설계, 다목적함수, 민감도 해석, 재설계, 지식기반시스템, 유전적 알고리듬, 신경회로망 등 새로운 방법들이 많이 소개되었다. 이들을 이론적인 배경에 의해 분류하면, 최적화 이론과 인공지능의 두 가지로 크게 나누어 볼 수 있다. 하지만 한편으로는 이들을 '어떻게 하면 더 나은 설계를 할 수 있는가\ulcorner'하는 한가지 목표를 달성하기 위해 제안되고 있는 여러가지 도구들로도 이해될 수 있다. 이글에서는 이 다양한 방법들에 대한 관련성을 설계 방법론이라는 관점에서 설명을 시도하고자 한다.

  • PDF

A Hybrid Genetic Algorithm for the Multiobjective Vehicle Scheduling Problems with Service Due Times (서비스 납기가 주어진 다목적차량일정문제를 위한 혼성유전알고리듬의 개발)

    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.2
    • /
    • pp.121-134
    • /
    • 1999
  • In this paper, I propose a hybrid genetic algorithm(HGAM) incorporating a greedy interchange local optimization procedure for the multiobjective vehicle scheduling problems with service due times where three conflicting objectives of the minimization of total vehicle travel time, total weighted tardiness, and fleet size are explicitly treated. The vehicle is allowed to visit a node exceeding its due time with a penalty, but within the latest allowable time. The HGAM applies a mixed farming and migration strategy in the evolution process. The strategy splits the population into sub-populations, all of them evolving independently, and applys a local optimization procedure periodically to some best entities in sub-populations which are then substituted by the newly improved solutions. A solution of the HCAM is represented by a diploid structure. The HGAM uses a molified PMX operator for crossover and new types of mutation operator. The performance of the HGAM is extensively evaluated using the Solomons test problems. The results show that the HGAM attains better solutions than the BC-saving algorithm, but with a much longer computation time.

  • PDF