• Title/Summary/Keyword: 다공성 매질 모형

Search Result 12, Processing Time 0.025 seconds

A numerical investigation on nonlinear behavior of fluid flow with variation of physical properties of a porous medium (다공성 매질의 물리적 특성 변화에 따른 유체흐름의 비선형 거동에 대한 수치적 분석)

  • Jeong, Woochang
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.5
    • /
    • pp.325-334
    • /
    • 2017
  • In this study, the numerical investigation of the non-linear behavior of the fluid flow with physical properties, such as porosity and intrinsic permeability of a porous medium, and kinematic viscosity of a fluid, are carried out. The applied numerical model is ANSYS CFX which is the three-dimensional fluid dynamics model and this model is verified through the application of existing physical and numerical results. As a result of the verification, the results of the pressure gradient-velocity relationship and the friction coefficient-Reynolds number relationship produced from this study show relatively good agreement with those from existing physical and numerical experiments. As a result of the simulation by changing the porosity and intrinsic permeability of a porous medium and the kinematic viscosity of a fluid, the kinematic viscosity has the biggest effect on the non-linear behavior of the fluid flow in the porous medium.

A Numerical Study on Nonlinear Flow in Porous Medium (다공성 매질에서 비선형 흐름에 대한 수치적 연구)

  • Jeong, Woo Chang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.384-384
    • /
    • 2017
  • In this study, the numerical investigation of nonlinear flow in a porous medium was carried out. The applied numerical model is ANSYS CFX which is a three-dimensional fluid dynamic model, and the verification of this model was carried out by using the experimental data obtained from Mayer et al works(2011). The experimental and numerical results of velocity and Reynolds number-friction coefficient relationship show relatively a good agreement. Based on the experimental results, we analysed numerically the velocity and Reynolds number-friction coefficient relationship with the variation of permeability, dynamic viscosity and porosity and quantitatively the variation by applying the best curve fitting for each case.

  • PDF

A Numerical Study on Spatial Behavior of Linear Absorbing Solute in Heterogeneous Porous Media (비균질 다공성 매질에서 선형 흡착 용질의 공간적 거동에 대한 수치적 연구)

  • Jeong, Woo Chang;Lee, Chi Hun;Song, Jai Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.79-88
    • /
    • 2003
  • This paper presents a numerical study of the spatial behavior of a linear absorbing solute in a heterogeneous porous medium. The spatially correlated log-normal hydraulic conductivity field is generated in a given two-dimensional domain by using the geostatistical method (Turning Bands algorithm). The velocity vector field is calculated by applying the two-dimensional saturated groundwater flow equation to the Galerkin finite element method. The simulation of solute transport is carried out by using the random walk particle tracking model with CD(constant displacement) scheme in which the time interval is automatically adjusted. In this study, the spatial behavior of a solute is analyzed by the longitudinal center-of-mass displacement, longitudinal spatial spread moment and longitudinal plume skewness.

  • PDF

An experimental study on the correlation of hydraulic mean radius and hydrodispersive parameters in rockfill porous media (자갈 다공성매질에서 수리평균반경과 수리분산 매개변수의 상관성에 관한 실험적 연구)

  • Han, Ilyeong;Lee, Jaejoung;Kim, Gyoo Bum
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.863-873
    • /
    • 2021
  • The mechanical dispersion which dominates solute transport in porous media is caused by the difference in flow velocity within pores. Longitudinal dispersion coefficient and longitudinal dispersivity that are hydro-dispersive parameters of advection-dispersion equation can only be obtained by experiment. Hydraulic mean radius that represents the amount and intensity of flowing water within pores can be obtained by the formula using the factors for physical properties. A slug injection test was conducted and a power type empirical formula for obtaining a longitudinal dispersivity using a hydraulic mean radius in rockfill porous media was derived. It is possible to obtain the longitudinal dispersivity depending on transport distance because it contains a formula for a scale constant, and expected to be applicable to waterways filled with homogeneous gravel and small flow rate.

Experimental study on non-linear throughflow characteristics of rockfill gabion weir (돌망태 보 통과류의 비선형적 흐름 특성에 관한 실험적연구)

  • Han, Ilyeong;Lee, Jaejoung;Kim, Gyoo bum
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.861-870
    • /
    • 2020
  • As the flow velocity and Reynolds number increase in rockfill porous media, the flow deviates from Darcy conditions. In this study, the permeability tests of rock column specimen and laboratory gabion weir model were carried out to investigate a head loss behaviour of flow through rockfill deposition in small river artificial recharge. Through column test, the nonlinear relationships between flow velocity and hydraulic gradient and coefficients were determined and the correlation formula of hydraulic mean radius and coefficients was proposed. The flow velocities and discharges in voids estimated by proposed equations were well matched with the measured values of laboratory gabion weir model.

Approximations for Array of Point Sources in Groundwater Contaminant Transport Modeling (지하수 오염물질 이동모형에 있어서 배열된 점원의 근사방법 연구)

  • Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.132-136
    • /
    • 1988
  • A strategic question in groundwater contaminant transport modeling is whether we need to treat waste packages or drums as individual, discrete sources or as approximately lumped sources. In this paper we present analyses of array sources in porous media. We analyze a planar array of sources in porous media with groundwater flow. We compare the concentration field predicted by a detailed model of individual point sources to concentration fields predicted by an infinite plane source and a single point source, all of the same equivalent strength. From this study we identified three regions: (1) a region close to the sources where the effects of adjacent sources are significant and individual source models should be used, (2) a region extending from a few meters to hundreds to thousands of meters downstream, where an equivalent source of infinite extent gives accurate results, and (3) a far-field region, where in an equivalent source of finite extent gives accurate results.

  • PDF

Practical Numerical Model for Nonlinear Analyses of Wave Propagation and Soil-Structure Interaction in Infinite Poroelastic Media (무한 다공성 매질에서의 비선형 파전파 해석과 지반-구조물 상호작용 해석을 위한 실용적 수치 모형)

  • Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.379-390
    • /
    • 2018
  • In this study, a numerical approach based on mid-point integrated finite elements and a viscous boundary is proposed for time-domain wave-propagation analyses in infinite poroelastic media. The proposed approach is accurate, efficient, and easy to implement in time-domain analyses. In the approach, an infinite domain is truncated at some distance. The truncated domain is represented by mid-point integrated finite elements with real element-lengths and a viscous boundary is attached to the end of the domain. Given that the dynamic behaviors of the proposed model can be expressed in terms of mass, damping, and stiffness matrices only, it can be implemented easily in the displacement-based finite-element formulation. No convolutional operations are required for time-domain calculations because the coefficient matrices are constant. The proposed numerical approach is applied to typical wave-propagation and soil-structure interaction problems. The model is verified to produce accurate and stable results. It is demonstrated that the numerical approach can be applied successfully to nonlinear soil-structure interaction problems.

Estimation of Hydraulic Properties in Porous Media (다공성 매질의 수리특성 추정)

  • Park, Jae-Hyeon;Park, Chang-Kun;Soun, Jung-Ho
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.107-113
    • /
    • 1994
  • The analysis of Richards eq. requires data of the soil water retention function and the unsaturated hydraulic conductivity. The soil water retention function was measured through the use of the developed apparatus and the saturated hydraulic conductivity was measured by the constant head method for each soil sample corresponding to the A, B, C types of SCS. In order to obtain one water retention function and one unsaturated hydraulic conductivity which represent each soil group, van Genuchten's eq. and Mualem's pore-structure model was chosen respectively. Parameters of van Genuchten's eq. are estimated for each soil group using data obtained in the experiments, and estimated values give a basis to analyze the unsaturated flow in the non-measured region efficiently.

  • PDF

Experimental Study on Hysteresis Phenomena in Porous Media (다공성 매질에서 이력현상에 대한 실험적 연구)

  • 강우영;박재현
    • Water for future
    • /
    • v.28 no.4
    • /
    • pp.215-222
    • /
    • 1995
  • The water retention function which has the hysteresis phenomena is required to analyze the Richards equation which is a governing equation of the unsaturated flow, and its hysteresis phenomena has influence upon the characteristics of the unsaturated flow. The accuracy of the published hysteresis models is compared by using experimental data of the water retention function. The apparatus to experiment the hysteresis phenomena on the soil is developed, and experimental data for the main wetting process and the main drying process of the water retention function are obtained. The parameters of the van Genuchten equation are calibrated by using experimentally obtained data. As a result of the comparison of the selected hysteresis models which simulate the main drying curve from the main wetting curve, the Model I-1(Mualem) overestimates and the Model II-1(Mualem) underestimates but the Model III-2(Park and Sonu) similarly estimates the experimental data of the main drying curve.

  • PDF