• Title/Summary/Keyword: 다공성 구조

Search Result 658, Processing Time 0.035 seconds

Production of yuzu granules using enzyme treated yuzu pulp powder and evaluation of its physiochemical and functional characterization (유자박 식이섬유를 이용한 유자과립 제조 및 이화학적 특성조사)

  • Seong, Hyeon Jun;Lee, Bo-Bae;Kim, Duck-Hyun;Lee, Seung-Hyun;Ha, Ji-Young;Nam, Seung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.382-390
    • /
    • 2021
  • In this study, solubilized yuzu pulp powder (EYP) was produced using enzyme treated yuzu pulp powder (YP) and used to manufacture yuzu granules (0-20% EYP content). The physicochemical, product stability, and functional properties of Yuzu granules were compared among five enzyme treatments. Among the five treatments, CL had the highest YP solubilization yield (48.68%). Microstructural observation of EYP using FE-SEM revealed that its surface became irregular and porous after enzymatic treatment. Compared to YP, EYP had 2 times lower insoluble dietary fibers and 3 times lower hemicellulose and cellulose content. Among the yuzu granules, IV (yuzu granules with 15% EYP) had an excellent water and oil holding capacity and flowability. IV granule had the highest narirutin and hesperidin content of 3.4 mg and 2.2 mg/g DW, respectively and the highest antioxidant (68.4%) and tyrosinase inhibitory activities (82.5%). Therefore, EYP or granule with EYP can be used as a functional component in food industry or pharmaceutical field.

Partial Oxidation of CH4 Using {0.7}Sr0.3Ga0.6Fe0.4O3-δ for Soild Oxide Fuel Cell (고체산화물 연료전지용 La0.7Sr0.3Ga0.6Fe0.4O3-δ계의 메탄부분산화반응)

  • Lee, Seung-Young;Lee, Kee-Sung;Lee, Shi-Woo;Kim, Jong-Won;Woo, Sang-Kuk
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 2003
  • We fabricated mixed ionic-electronic conducting membranes, $CH_4\;Using\;{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, by solid state reaction method for solid oxide fuel cell. The membranes consisted of single perovskite phase and exhibited high relative density, $>95\%$. We coated $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ layer using screen printing method in order to improve surface reactivity of the $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$. As a result, the oxygen permeation flux of the coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ showed higher value, $0.5ml/min{\cdot}cm^2\;at\;950^{\circ}C$ than the uncoated one. Higher oxygen permeation was observed in the porously coated Lao $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$membranes with larger grain sizes. Syngas, $CO+H_2$, was successfully obtained from methane gas, $CH_4$, using the $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, with over $40\%\;of\;CH_4$ conversion and syngas yield. $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ membrane was stable even when it was exposed to the reducing environment, methane, for 600 hrs at $950^{\circ}C$.

Layer-by-Layer Self-Assembled Multilayer Film Composed of Polyaniline, Graphene Oxide, and Phytic Acid for Supercapacitor Application (슈퍼커패시터 활용성 자가조립된 폴리아닐린, 그래핀 옥사이드 그리고 피트산으로 구성된 다층 초박막)

  • Lee, Myungsup;Hong, Jong-Dal
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.1
    • /
    • pp.36-44
    • /
    • 2015
  • This article describes synthesis and electrochemical properties of layer-by-layer self-assembled multilayer film composed of polyaniline (PANi), graphene oxide (GO) and phytic acid (PA), whereby the GO was electrochemically reduced to ERGO, resulting in $(PANi/ERGO/PANi/PA)_{10}$ film electrode. Especially, we examined the possibility to improve the volumetric capacitive property of $(PANi/ERGO)_{20}$ film electrode via combining a spherical hexakisphosphate PA nanoparticle into the multilayer film that would dope PANi properly and also increase the porosity and surface area of the electrode. The electrochemical performances of the multilayer film electrodes were investigated using a three-electrode configuration in 1 M $H_2SO_4$ electrolyte. As a result, the $(PANi/ERGO)_{20}$ electrode showed the volumetric capacitance of $666F/cm^3$ at a current density of $1A/cm^3$, which was improved to the volumetric capacitance of $769F/cm^3$ for the $(PANi/ERGO/PANi/PA)_{10}$ electrode, in addition to the cycling stability maintained to 79.3% of initial capacitance after 1000 cycles. Thus, the electrochemical characteristics of the $(PANi/ERGO)_{20}$ electrode, which was densely packed by ${\pi}-{\pi}$ stacking between the electron-rich conjugate components, could have been improved through structural modification of the multilayer film via combining a spherical hexakisphosphate PA nanoparticle into the multilayer film.

Vibration Test for PCB/Connector Assembly (인쇄회로기판 진동이 커넥터에 미치는 영향)

  • 허남일;김성철;송규섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.160-164
    • /
    • 1995
  • 정보통신 시스템의 고속/고밀도화 요구에 따라 개발되고 있는 ATM(Asynchronous Transfer Mode) 교환기 시스템은 팬을 이용한 강제대류냉각 방식의 채택과 시스템이 설치되는 장소에 따른 여러 환경조건에 의한 진동 문제가 발생될 수 있다. 시스템의 진동으로 인한 피해중 커넥터 접촉부에서 전기적 특성의 변화는 고속으로 전송되는 신호의 왜곡을 유발시킬 수 있어 시스템 개발시 이에 대한 충분한 연구 및 시험이 요구되고 있다. 진동환경에서 커넥터 접촉부는 접촉면의 상대운동으로 인한 접촉저항의 증가와 순간적인 신호전달 중단을 가져오게 되며, 특히 PCB/Connector Assembly에서 커넥터 접촉부는 PCB(Printed Circuit Board)의 장착 조건 및 동적 거동에 따라 전기적 특성이 변할 수 있다. 시스템에서 커넥터의 동적 거동을 이해하기 위해서는 PCB를 포함하는 시스템내 여러 요소의 동적 특성 이해와 복잡한 해석과정이 요구되며, 시스템 개발자는 진동 환경에서 이것의 시험 결과에 따라 커넥터의 사용을 결정해야 할 것이다. 커넥터의 전기적 특성 시험법은 IEC, EIA드 여러 국제 규격에 제시되어 있으며, 본 연구의 대상이 된 ATM교환기 시스템에서 PCB/Connector Assembly의 진동환경에서 접촉저항 측정과 관련된 접촉저항 임계치 및 측정법은 IEEE 규격 및 Bellcore 규격에 규정되어 있다. Bellcore에는 주어진 진동시험주기 전후에 IEC 규격의 LLCR(Low Level Contact Resistance) 측정회로를 이용한 측정법이 규정되어 있고, 냉각팬 및 주위 환경진동이 가해지는 동안의 영향에 대한 시험법은 규정되어 있지 않다. 본 연구에서는 한국통신의 전자장비 운용환경시험 조건의 진동에서 ATM 교환기 시스템에 사용되는 PCB/Connector Assembly 커넥터 접촉부의 접촉저항 변화와 PCB 진동에 의한 영향을 시험하였다.proach)등이 제시되었고 평면파 영역에 한하여 해서되어져 왔다. 본 논문에서는 분할 접근 방법(Segmentation Approach)을 이용하여 다공 요소로 이루어진 소음기를 해석하는데 적용하였다.로 성능 및 안정도에 영향을 미치므로 주의 깊게 선정해야 한다. 방법의 실질적인 적용에는 어려움이 있다. 본 연구에서는 기존의 방법들의 단점을 극복할 수 있는 새로운 회귀적 모우드 변수 규명 방법을 개발하였다. 이는 Fassois와 Lee가 ARMAX모델의 계수를 효율적으로 추정하기 위하여 개발한 뱉치방법인 Suboptimum Maximum Likelihood 방법[5]를 기초로 하여 개발하였다. 개발된 방법의 장점은 응답 신호에 유색잡음이 존재하여도 모우드 변수들을 항상 정확하게 구할 수 있으며, 또한 알고리즘의 안정성이 보장된 것이다.. 여기서는 실험실 수준의 평 판모델을 제작하고 실제 현장에서 이루어질 수 있는 진동제어 구조물에 대 한 동적실험 및 FRS를 수행하는 과정과 동일하게 따름으로써 실제 발생할 수 있는 오차나 error를 실험실내의 차원에서 파악하여 진동원을 있는 구조 물에 대한 진동제어기술을 보유하고자 한다. 이용한 해마의 부피측정은 해마경화증 환자의 진단에 있어 육안적인 MR 진단이 어려운 제한된 경우에만 실제적 도움을 줄 수 있는 보조적인 방법으로 생각된다.ofile whereas relaxivity at high field is not affected by τS. On the other hand, the change in τV does not affect low field profile but strongly in fluences on both inflection fie이 and the maximum relaxivity value. The results shows a fluences on both inflection field and the maximum relaxivity v

  • PDF

Synthesis of Prussian Blue Analogue and Magnetic and Adsorption Characteristics of MnFe2O4 (프러시안 블루 유사체의 합성 및 MnFe2O4의 자성과 흡착 특성)

  • Lee, Hye-In;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • The Prussian Blue Analogue(PBA) has three dimensional structure and the metal - organic framework material, and it has a variety configurations depending on the type of organic ligands. PBA has been receving an attention in the fields of biosensors, optical, catalytic, and hydrogen storage device. Also, it is an environmental friendly substance with a chemical stability. In addition, PBA is widely used in the filed of adsorption art since we can adjust the size of the fine pores. In this study, we synthesized $Mn_3[Fe(CN)_6]_2$, an organometallic framework chains by using a hydrothermal synthesis method. We used $K_4[Fe(CN)_6]$ and $MnCl_2$ as precursors. We also produced a manganese iron oxide, by baking the synthesized material. The effect of the size and shape of the particles was examined by controling pH of the precursor solution, the molar concentration of the precursor, and reaction time as the experimental variables. Synthesized absorbent was analyzed by XRD, SEM, FT-IR, UV-Vis, and TG / DTA to evaluate the adsorption properties of several dyes.

Friction Factor in Micro Channel Flow with Electrochemical Reactions in Fuel Cell (전기화학반응을 수반한 유로채널 형상에 따른 마찰계수에 대한 연구)

  • Cho, Son-Ah;Lee, Pil-Hyong;Han, Sang-Seok;Choi, Seong-Hun;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.245-251
    • /
    • 2007
  • The performance of fuel cell is enhanced with increasing reaction surface. Narrow flow channels in flow plate cause increased pumping power. Therefore it is very important to consider the pressure drops in the flow channel of fuel cell. Previous research for pressure drop for micro channel of fuel cell was focused on effects of various configuration of flow channel without electrochemical reaction. It is very important to know pressure loss of micro flow channel with electrochemical reaction because fluid density in micro channel is changed due to chemical reaction. In this paper, it is investigated that the pressure drops in micro channel of various geometries at anode and cathode with electrochemical reaction and compared them to friction coefficient (fRe), velocity, pressure losses for corresponding non reacting flow channel. The results show that friction factors for cold flow channel could be used for parallel and bended flow channel for flow channel design of fuel cell. In the other hand, pressure drop for serpentine flow channel is the lowest among flow channels due to bypass flow across gas diffusion layer under reacting flow condition although its pressure drop is highest for cold flow condition.

Calcination Condition for Recovery of Calcium from Cuttle Bone and Characteristics of Calcined Cuttle Bone Powder (갑오징어갑으로부터 칼슘의 회수조건 및 소성 칼슘의 특성)

  • CHO Moon-Lae;HEU Min-Soo;KIM Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.600-604
    • /
    • 2001
  • For the effective utilization of cuttle bone as a calcium powder, we examined calcination condition ($700^{\circ}C: 0\sim10\;hrs,\;800^{\circ}C:\;0\sim3\;hrs,\;900^{\circ}C:\;0\sim1\;hr\;and\;1,000^{\circ}C:\;0\sim30\;mins$) for recovery of calcium from raw cuttle bone powder (RCB) and characteristics of calcined cuttle bone powder (CCB) treated by optimal condition. During calcination of RCB, the yields was decreased, while total and soluble calcium contents and white index were increased up to constant calcination time ($8\;hrs\;at\;700^{\circ}C,\;2\;hrs\;at\;800^{\circ}C,\;45\;min\;at\;900^{\circ}C\;and\;20\;min\;at\;1,000^{\circ}C$). But, these after that almost unchanged. From these results, the optimal calcination conditions for recovery of calcium from RCB were revealed $8\;hrs\;at\;700^{\circ}C,\;2\;hrs\;at\;800^{\circ}C,\;45\;min\;at\;900^{\circ}C\;and\;20\;min\;at\;1,000^{\circ}C$. In the case of CCB treated for 2 hrs at $800^{\circ}C$, total calcium was about $70\%$, the major component was calcium oxide, and the structure consisted of porosity. The calcium solubility of CCB increased by 22 times compared to RCB. But, the pH of RCB was about 12.9. Therefore, for the effective utilization of RCB as a calcium powder, it requires a suitable modification operation for adjustment of pH ($pH\;2.0\~9.0$).

  • PDF

Fabrication and characteristics of porous ceramics from $ZrTiO_4$ based ceramic material (다공성 $ZrTiO_4$ 재료의 제조 및 특성)

  • Hur, Geun;Myoung, Seong-Jae;Lee, Yong-Hyun;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2008
  • Cordierite has a very low thermal expansion coefficient, but has problem that it has a weak mechanical strength and is apt to be attacked by acid such as sulfur for using as a diesel particulate filter support. The physical properties of $ZrTiO_4$ modified with $SiO_2,\;Al_2O_3$, MoOx, $Cr_2O_3\;and\;Nb_2O_5$ were investigated with XRD, SEM, UTM and thermal expansion, etc. in this paper. $ZrTiO_4$ powder was synthesized as a monoclinic structure with processes that starting materials of $TiO_2\;and\;ZrO_2$ were mixed with ball mill and calcined above $1240^{\circ}C$ for 3 hr. Additive modified $ZrTiO_4$ specimens for flexural strength and thermal expansion measurement were obtained by mixing $ZrTiO_4$ powder with additives, pressing and firing at $1300^{\circ}C$ for 3 hr. The porosity of additive modified $ZrTiO_4$ decreased monotonically with increasing additive content by 5 wt% regardless of additive types and saturated for further increase of additive by 10wt. The flexural strength of $Al_2O_3$ (5, 10 wt%) modified $ZrTiO_4$ shows a large increase, but that of other additives modified $ZrTiO_4$ decreased. The thermal expansion coefficient of additive modified $ZrTiO_4$ except $Nb_2O_5$ decreased continuously with the content of additive. In particular, the lowest thermal expansion coefficient of $ZrTiO_4$ was obtained for the additive of $SiO_2$.

Effect of Particle Size on the Atomic Structure of Amorphous Silica Nanoparticles: Solid-state NMR and Quantum Chemical Calculations (비정질 규산염 나노입자의 입자 크기에 따른 원자 구조 변화 : 고상 핵자기공명 분석 및 양자화학계산 연구)

  • Kim, Hyun-Na;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.321-329
    • /
    • 2008
  • Amorphous silica nanoparticles are among the most fundamental $SiO_2$ compounds, having implications in diverse geological processes and technological applications. Here, we explore structural details of amorphous silica nanoparticles with varying particle sizes (7 and 14 nm) using $^{29}Si$ and $^{1}H$ MAS NMR spectroscopy together with quantum chemical calculations to have better prospect for their size-dependent atomic structures. $^{29}Si$ MAS NMR spectra at 9.4 T resolve $Q^2,\;Q^3$ and $Q^4$ species at -93 ppm, -101 ppm, -110 ppm, respectively. The fractions of $Q^2,\;Q^3,\;O^4$ species are $7{\pm}1%,\;27{\pm}2%$, and $66{\pm}2%$ for 7 nm amorphous silica nanoparticles and $6{\pm}1%,\;21{\pm}2%$, and $73{\pm}2%$ for 14 nm amorphous silica nanoparticles. Whereas it has been suggested that $Q^2$ and $Q^3$ species exist on particles surfaces, the difference in $Q^{2}\;+\;Q^{3}$ fraction in both 7 and 14 nm particles is not significant, suggesting that $Q^2$ and $Q^3$ species could exist inside particles. $^{1}H$ MAS NMR spectra at 11.7 T shows diverse hydrogen environments, including physisorbed water, hydrogen bonded silanol, and non-hydrogen bonded silanol with varying hydrogen bond strength. The hydrogen contents in the 7nm silica nanoparticles (including water and hydroxyl groups) are about 3 times of that of 14 nm particles. The larger chemical shills for proton environments in the former suggest stronger hydrogen bond strength. The fractions of non-hydrogen bonded silanols in the 14 nm amorphous silica nanoparticles are larger than those in 7 nm amorphous silica nanoparticles. This observation suggests closer proximity among hydrogen atoms in the nanoparticles with smaller diameter. The current results with high-resolution solid-state NMR reveal previously unknown structural details in amorphous silica nanoparticles with particle size.

Fabrication of VOx/Graphene Composite Using CO2 Laser Reduction and Atomic Layer Deposition and Its Electrochemical Performance (CO2 레이저 환원법과 원자층 증착법을 이용한 VOx/Graphene 복합체 제조 및 전기화학적 성능 평가)

  • Park, Yong-Jin;Kim, Jae-Hyun;Lee, Kyubock;Lee, Seung-Mo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.135-141
    • /
    • 2020
  • Although the graphene is regarded as a promising material for the electrode of the supercapacitor, its electrochemical performance is still less enough to satisfy the current demand raised in real applications. Here, using a home laser engraver, firstly we performed the prompt and selective reduction of the graphene oxide to produce multilayered and highly porous graphene maintaining high electrical conductivity. Subsequently, the resulting graphene was conformally deposited with pseudocapacitive thin VOx using atomic layer deposition in order to enhance specific capacitance of graphene. We observed that various forms of VOx exist in the VOx/graphene hybrid through XPS analysis. The hybrid showed highly improved specific capacitance (~189 F/g) as compared to the graphene without VOx. We expect that our approach is accepted as one of the alternatives to produce the graphene-based electrode for various energy storage devices.