DOI QR코드

DOI QR Code

Production of yuzu granules using enzyme treated yuzu pulp powder and evaluation of its physiochemical and functional characterization

유자박 식이섬유를 이용한 유자과립 제조 및 이화학적 특성조사

  • Seong, Hyeon Jun (Food Science & Technology, Chonnam National University) ;
  • Lee, Bo-Bae (Fruit Research Institute of Jeollanamdo Agricultural Research and Extension Services) ;
  • Kim, Duck-Hyun (Resource management division of Jeollanamdo Agricultural Research and Extension Service) ;
  • Lee, Seung-Hyun (G&B Incorporation) ;
  • Ha, Ji-Young (G&B Incorporation) ;
  • Nam, Seung-Hee (Food Science & Technology, Chonnam National University)
  • 성현준 (전남대학교 식품공학과) ;
  • 이보배 (전남농업기술원 과수연구소) ;
  • 김덕현 (전남농업기술원 자원경영연구소) ;
  • 이승현 (주식회사지앤비) ;
  • 하지영 (주식회사지앤비) ;
  • 남승희 (전남대학교 식품공학과)
  • Received : 2021.05.21
  • Accepted : 2021.07.21
  • Published : 2021.08.31

Abstract

In this study, solubilized yuzu pulp powder (EYP) was produced using enzyme treated yuzu pulp powder (YP) and used to manufacture yuzu granules (0-20% EYP content). The physicochemical, product stability, and functional properties of Yuzu granules were compared among five enzyme treatments. Among the five treatments, CL had the highest YP solubilization yield (48.68%). Microstructural observation of EYP using FE-SEM revealed that its surface became irregular and porous after enzymatic treatment. Compared to YP, EYP had 2 times lower insoluble dietary fibers and 3 times lower hemicellulose and cellulose content. Among the yuzu granules, IV (yuzu granules with 15% EYP) had an excellent water and oil holding capacity and flowability. IV granule had the highest narirutin and hesperidin content of 3.4 mg and 2.2 mg/g DW, respectively and the highest antioxidant (68.4%) and tyrosinase inhibitory activities (82.5%). Therefore, EYP or granule with EYP can be used as a functional component in food industry or pharmaceutical field.

본 연구에서는 유자박분말(YP)에 효소처리하여 불용성 식이섬유를 수용성 식이섬유로 전환시키고, 효소처리한 유자박분말(EYP)을 이용하여 유자과립을 제조 후 이의 이화학적특성, 제형안정성과 기능적 특성을 알아보았다. 유자박분말에 CL을 처리할 때 48.68%로 가장 우수한 가용화정도를 나타냈다. FE-SEM으로 YP와 EYP의 미세구조 관찰결과 효소처리 후 표면 불규칙하고 다공성이 됨을 확인하였다. YP에서 EYP로 변함에 따라 총 식이섬유의 함량은 비슷하지만 SDF는 1.5배 증가하였고, IDF는 2배 감소하는 경향을 보였으며, SDF/IDF는 3배 증가하였다. 식이섬유의 구성성분인 hemicellulose는 3배 감소하였고, cellulose는 2.5배 감소하였다. 유리당은 YP에서 galacturonic acid와 arabinose가 없었으나 효소처리 후 각각 1.64, 2.91 mg/g DW 생성되었다. 효소처리에 따라 설탕은 30% 감소하였으며, 포도당은 2배 증가함을 보였다. EYP를 이용하여 5가지 유자과립을 제조하였고, 이화학적 특성과 기능적 특성을 조사한 결과 유자과립의 pH는 3.25-3.28, 산도는 3.42-3.84%, 당도는 8.7-8.9°Brix를 나타냈다. 색도는 V의 황색이 21.57로 가장 높았으며, EYP의 함량에 비례해 황색이 높아지는 경향을 보였다. 제형안정성은 전체적으로 보았을 때 15% EYP를 함유한 IV가 용해도를 제외한 수분보유력, 유지보유력, 팽윤력, 흐름성에서 각각 1.07, 2.36, 2.60 g/g, 20.09 Arctano으로 제형안정성이 우수하였다. 플라보노이드 함량은 narirutin, naringin, hesperidin, neohesperidin을 측정하였고, 총 플라보노이드 함량은 EYP의 함량에 따라 증가하여 IV (15% EYP)와 V (20% EYP)가 7.69 mg/g으로 가장 높은 값을 나타냈다. 항산화능과 tyrosinase저해활성능은 IV에서 각각 68.4, 82.5%로 우수함을 보여, 전체적으로 유자박이 많이 첨가된 과립이 항산화능과 미백효능이 뛰어났다. 본 연구의 데이터를 종합적으로 볼 때 유자박분말에 효소처리를 통해 수용성이 높아지는 유자박분말을 생산하였고, 이를 이용해 제조한 유자과립은 기능성식품으로 가치가 높을 것으로 예상된다. 또한 소비자의 건강에 대한 관심이 증가함에 따라 기능성물질을 포함한 제품 개발 역시 증가하는 추세이며 본 연구에서 제조한 유자과립은 naringin, narirutin, hesperidin, neohesperidin 등의 기능성 플라보노이드, 식이섬유, 유산균을 함유하고 있어 산업적으로 이용가치가 높을 것으로 예상된다.

Keywords

Acknowledgement

본 연구는 농림수산식품기술기획평가원이 지원하는 유자제품 수출 활성화 위한 원료생산 안정화와 제품 고급, 다양화 비즈니스 모델 개발 과제(PJ 319089-03-1-HD030)와 한국연구재단이 지원하는 창의도전연구사업(NRF-2020R1I1A1A01074322)에서 지원받아 수행된 연구결과입니다.

References

  1. Baenas N, Nunez-Gomez V, Navarro-Gonzalez I, Sanchez-Martinez L, Garcia-Alonso J, Periago MJ, Gonzalez-Barrio R. Raspberry dietary fibre: chemical properties, functional evaluation and prebiotic in vitro effect. LWT-Food Sci. Technol. 134: 110140 (2020) https://doi.org/10.1016/j.lwt.2020.110140
  2. Cadden AM. Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers. J. Life Sci. 52: 1595-1599 (1987)
  3. Cheng Li, Zhang X, Hong Y, Li Z, Li C, Gu Z. Characterisation of physicochemical and functional properties of soluble dietary fibre from potato pulp obtained by enzyme-assisted extraction. Int J. Biol Macromol. 101: 1004-1011 (2017) https://doi.org/10.1016/j.ijbiomac.2017.03.156
  4. Choi JG, Extraction condition optimization and physical property analysis of water-soluble soybean polysaccharides and oligosaccharides. MS thesis, Chungbuk National University, Cheongju, Korea (2012)
  5. Chung HJ, Development and industrial application of low-calorie food ingredients derived from starches. Food Sci. Ind. 52: 358- 374 (2019) https://doi.org/10.23093/FSI.2019.52.4.358
  6. Cornfine C, Hasenkopf K, Eisner P, Schweiggert U. Influence of chemical and physical modification on the bile acid binding capacity of dietary fibre from lupins (Lupinus angustifolius L.). Food Chem. 122: 638-644 (2010) https://doi.org/10.1016/j.foodchem.2010.03.024
  7. Gunness P, Gidley MJ. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct. 1: 149-155 (2010) https://doi.org/10.1039/c0fo00080a
  8. Hua M, Sun Y, Shao Z, Lu J, Lu Y, Liu Z. Functional soluble dietary fiber from ginseng residue: polysaccharide characterization, structure, antioxidant, and enzyme inhibitory activity. J. Food Biochem. 44: 113531 (2020)
  9. Hur SS, Kim IC. Physical properties of granule prepared by ginseng extracts and selected forming agent. J. Korea Oil Chem. Soc. 35: 683-694 (2018)
  10. Hwang EY, Kim DH, Hwang JY, Kim HJ, Park TS, Lee IS, Son JH. A study on the depigmenting effect of carthamus tinctorius seed, cyperus rotundus and schizonepeta tenuifolia extracts. Korean J. Food Sci. Technol. 44: 76-81 (2012) https://doi.org/10.9721/KJFST.2012.44.1.076
  11. Im HJ, Park BY, Yoon KY. Production of soluble dietary fiber of buckwheat hulls by enzymatic depolymerzation and its characteristics. Korean J. Food Sci. Technol. 42: 97-103 (2016)
  12. Jin TY, Wang MH, Yin Y, Eun JB. Effect of Citrus junos peel on the quality and antioxidant activity of traditional rice wine, Jinyangju. J. Korean Soc. Food Sci. Nutr. 37: 76-82 (2008) https://doi.org/10.3746/jkfn.2008.37.1.76
  13. Kang HJ, Jo CR, Kwon JH, Jeong IY, Byun MY. Physiochemical characteristics and biological activity of Irradiated pectin solution. Korean J. Food Sci. Technol. 37: 741-745 (2005)
  14. Kim JT. Analysis of extrusion process for functional dietary fiber production. MS thesis, Myongji University, Seoul, Korea (1996)
  15. Kim KJ. Studiea on constituents and removing bitter substance of yuzu: Citrus junos. Sieb. MS Thesis, Suncheon National University, Jeonnam, Korea. (2003)
  16. Kim YD, Kim KJ. Optimum condition for removing bitter substance of yuzu (Citrus junos) by Enzyme Treatment. Korean J. Food Preserv. 11: 53-56 (2004)
  17. Kim HY, Kong HJ. Preparation and quality characteristics of sugar cookies using citron powder. Korean J. Food Cook. Sci. 23: 712- 719 (2006)
  18. Kim AY, Jeong HJ, Park SN. Antioxidant activities of citrus junos seed shell extract and fractions cultivated in Korea J. Korea Oil Chem. Soc. 34: 236-243 (2017)
  19. Lee JE, Kim JM, Kim JS, Kim GC, Choi SY, Kim SB. Chemical compositions and antioxidant activities depending on cultivation methods and various parts of yuzu. Korean J. Food Preserv. 24: 802-812 (2017a) https://doi.org/10.11002/kjfp.2017.24.6.802
  20. Lee KS, Kim AJ, Lee KY. Increased alcohol decomposition efficacy of Hoveina dulcis extract by carbohydrate-hydrolyzing enzymes. J. East Asian Soc. Diet. Life. 22: 473-479 (2012)
  21. Lee CW, Kim MB, Oh YJ, Lim SB. Physicochemical properties of citrus hallabong granules. J. Korean Soc. Food Sci. Nutr. 43: 537-543 (2014) https://doi.org/10.3746/jkfn.2014.43.4.537
  22. Lee DH, Jang JH, Hong JH. Spray-dried powder preparation of pumpkin sweet potato hydrolysates and its physicochemical properties. Korean J. Food Preserv. 24: 246-253 (2017b) https://doi.org/10.11002/kjfp.2017.24.2.246
  23. Lee SM, Rhee SH, Park KY, Rhew TH, Kim BG, Chung HY. Antimutagenic effect of insoluble dietary fibers from some green yellow vegetables and soybean by binding the carcinogens. J. Life Sci. 5: 26-32 (1995)
  24. Liu H, Zeng X, Huang J, Yuan X, Wang Q, Ma L. Dietary fiber extracted from pomelo fruitlets promotes intestinal functions, both in vitro and in vivo. Carbohyd. Polym. 252: 117186 (2021) https://doi.org/10.1016/j.carbpol.2020.117186
  25. Lundberg B, Pan X, White A, Chau H, Hotchkiss A. Rheology and composition of citrus fiber. J. Food Eng. 125: 97-104 (2014) https://doi.org/10.1016/j.jfoodeng.2013.10.021
  26. Moon SH, Assefa AD, Ko EY, Park SW. Comparison of flavonoid contents and antioxidant activity of yuzu (Citrus junos Sieb. ex Tanaka) based on harvest time. Korean J Hortic. Sci. 33: 283-291 (2015)
  27. Nam SH, Cho HS, Jeong HN, Lee BB, Cho YS, Rameeza F, Eun JB. Physiochemical properties, dietary fibers, and functional characterization of three yuzu cultivars at five harvesting times. Food Sci. Biotechnol. 30: 117-127 (2021) https://doi.org/10.1007/s10068-020-00850-3
  28. Nam HW, Hyun YH, Pyun JW. A study on the optimum ratio of starch and dilution factors of yuza extract in preparation of yuza pyun. J. East Asian Soc. Diet. Life. 14: 591-597 (2004)
  29. Opiz B, Prediger A, Luder C, Eckstein M, Hilterhaus L, Linder P, Beutel S, Scheper T, Liese A. In situ microscopy for In-line monitoring of the enzymatic hydrolysis of cellulose. Anal Chem. 85: 8121-8126 (2013) https://doi.org/10.1021/ac4008495
  30. Park JH, Kang BW, Kim JE, Seo MJ, Lee YC, Lee JH, Ju MH, Choi JH, Ik HS, Jeong YK, Lee BG. Effect of ethanol extract from peel of Citrus junos and Poncirus trifoliata on antioxidant and immune activity. J. Life Sci. 18: 403-408 (2008) https://doi.org/10.5352/JLS.2008.18.3.403
  31. Park SM, Lee HY, Chang HC, Kim IC. Extraction and physicochemical properties of the pectin in citron peel. J. Korean Soc. Food Sci. Nutr. 30: 569-573(2001)
  32. Park HS, Lee HJ, Youn KS, Kim DS, Kim HS, Lee YG, Seong JH, Chung HS. Quality comparison of hot-water leachate from teabags containing Citrus junos peels dried using different methods. Korean J. Food Preserv. 24: 1088-1093 (2017) https://doi.org/10.11002/kjfp.2017.24.8.1088
  33. Park SY, Yoon KY. Production of enzymatic hydrolysate including water-soluble fiber from hemicellulose fraction of chinese cabbage waste. Korean J. Food Sci. Technol. 47: 6-12 (2015) https://doi.org/10.9721/KJFST.2015.47.1.6
  34. Prosky L, Asp N, Swizer TF, Devries J, Furda I. Determination of insoluble and total dietary fiver on foods and food products: Interlaboratory study. J. AOAC Int. 71: 1017-1023 (1988) https://doi.org/10.1093/jaoac/71.5.1017
  35. Shin MG, Lee GH. Physicochemical and sensory characteristics of Green prunus mume powder granule. J. Korean Soc. Food Sci. Nutr. 41: 970-974 (2012) https://doi.org/10.3746/jkfn.2012.41.7.970
  36. Shin JH, Lee SJ, Seo JG, Jeon EW, Sung NJ. Antioxidant activity of hot-Water extract from Yuza (Citrus junos SIEB ex TANAKA) peel. J. Life Sci.18: 1747-1751 (2008)
  37. Shin JH, Yang SM, Kang MJ, Lee SJ, Kim SH, Sung NJ. Biological activities of hot water extracts made from yuza (Citrus junos SIEB ex TANAKA) peel cultivated in Namhae. Korean J. Food Cook. Sci. 26: 79-87 (2010)
  38. Takamine K. Jeon BH, Kim WS. Screening of dietary fiber degradation enzyme for making sweet potato soju by vacuum distillation. J. Physiol & Pathol. Korean Med. 26: 35-39 (2012)
  39. Wang L, Wu H, Yuan F, Pan Q, Fan R, Gao Y. Physicochemical characterization of five types of citrus dietary fibers. Biocatal. Agric. Biotechnol. 4: 250-258 (2015) https://doi.org/10.1016/j.bcab.2015.02.003
  40. Yoon HS, Kim CH, Kim TJ, Keum IK, Han NS. Novel functional sugar L-arabinose: Its funtionality, use and production methods. Korean J. Food Sci. Technol. 35: 757-763 (2003)
  41. Zhang X, Lee FZ, Eun JB. Physical properties of dietary fiber source from peel of asian pear fruit at different growth stages. Korean J. Food Sci. Technol. 37: 905-911 (2005)
  42. Zheng Y, Li Y. Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres: effects of cellulase hydrolysis, acid treatment and particle size distribution. Food chem. 257: 135-142 (2018) https://doi.org/10.1016/j.foodchem.2018.03.012