DOI QR코드

DOI QR Code

Partial Oxidation of CH4 Using {0.7}Sr0.3Ga0.6Fe0.4O3-δ for Soild Oxide Fuel Cell

고체산화물 연료전지용 La0.7Sr0.3Ga0.6Fe0.4O3-δ계의 메탄부분산화반응

  • Published : 2003.02.01

Abstract

We fabricated mixed ionic-electronic conducting membranes, $CH_4\;Using\;{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, by solid state reaction method for solid oxide fuel cell. The membranes consisted of single perovskite phase and exhibited high relative density, $>95\%$. We coated $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ layer using screen printing method in order to improve surface reactivity of the $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$. As a result, the oxygen permeation flux of the coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ showed higher value, $0.5ml/min{\cdot}cm^2\;at\;950^{\circ}C$ than the uncoated one. Higher oxygen permeation was observed in the porously coated Lao $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$membranes with larger grain sizes. Syngas, $CO+H_2$, was successfully obtained from methane gas, $CH_4$, using the $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, with over $40\%\;of\;CH_4$ conversion and syngas yield. $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ membrane was stable even when it was exposed to the reducing environment, methane, for 600 hrs at $950^{\circ}C$.

고상 반응법을 이용하여 $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ 분말을 합성하고 소결하여 혼합전도성 분리막을 제조하였다. 제조된 분리막들은 페롭스카이트 단일상 결정구조를 나타내었으며, $95\%$, 이상의 상대밀도를 나타내었다. 산소이온 변환 능력을 향상시키기 위해 $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$의 양 표면에 $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ paste를 스크린 프린팅 방법으로 코팅한 결과, 코팅되지 않은 분리막에 비해 산소투과 유속이 크게 증가하여 $950^{\circ}C,\; {\Delta}P_{o_2}=0.21 atm$에서 약 $0.5ml/min{\cdot}cm^2$의 값을 나타내었다. 이러한 산소투과 유속은 표면 코팅층이 다공성일수록, $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$의 결정립 크기가 증가할수록 증가하는 경향을 나타내었다. 제조된 디스크 형상의 소결체를 이용하여 $950^{\circ}C$에서 메탄부분산화반응을 행한 결과 $40\%$ 이상의 메탄전환율과 합성가스의 수율을 얻을 수 있었으며, CO의 선택도는 $100\%$를 나타내었다 또한, $950^{\circ}C$의 메탄분위기에서 600시간의 장기부분산화반응을 통해 상의 안정성을 확인하였다.

Keywords

References

  1. Science and Technology of Veramic Fule Cell N. Q. Minh;T. Takahashi
  2. Solid State Ionics v.79 T. Ishihara;Y. Hiei;Y. Takita https://doi.org/10.1016/0167-2738(95)00090-S
  3. Int. J. Hydrogen Energy v.21 S. Cavallaro;S. Freni https://doi.org/10.1016/0360-3199(95)00107-7
  4. J. Catalysis v.164 Y. S. Lin;Y. Zeng https://doi.org/10.1006/jcat.1996.0377
  5. J. Member. Sci. v.166 W. Jin;S. Li;P. Huang;N. Xu;J. Shi;Y. S. Lin https://doi.org/10.1016/S0376-7388(99)00245-8
  6. Catalysis Today v.56 Y. Lu;A. G. Dixon;W. R. Moser;Y. H. Ma;U. Balachandran https://doi.org/10.1016/S0920-5861(99)00287-4
  7. Proc. 2nd Inter. Fuel Cell Conference T. Ishihara;Y. Hiei;Y. Takita
  8. Solid State Ionics v.113 T. Ishihara;Y. Hiei;Y. Takita;T. Yamada;T. Akbay https://doi.org/10.1016/S0167-2738(98)00289-6
  9. NREL/C570-26938 Engineering development of ceramic membtane teator systems for converting natural gas to hydrogen and synthesis gas for liquid transportation fules Paul. N. Dyer;Chrisopher M. Chen;Douglas L. bennett
  10. Solid State Ionics v.106 S. Kim;Y. L. Yang;A. J. Jacobson;B. Abeles https://doi.org/10.1016/S0167-2738(97)00492-X
  11. Solid State Ionics v.139 A. Tschope;E. Sommer;R. Birringer https://doi.org/10.1016/S0167-2738(01)00678-6
  12. Solid State Ionics v.135 T. Ishihara (ed al.) https://doi.org/10.1016/S0167-2738(00)00424-0