• Title/Summary/Keyword: Perovskite

Search Result 1,211, Processing Time 0.029 seconds

Organic-Inorganic Perovskite for Highly Efficient Tandem Solar Cells (고효율 적층형 태양전지를 위한 유무기 페로브스카이트)

  • Park, Ik Jae;Kim, Dong Hoe
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.146-169
    • /
    • 2019
  • To overcome the theoretical efficiency of single-junction solar cells (> 30 %), tandem solar cells (or multi-junction solar cells) is considered as a strong nominee because of their excellent light utilization. Organic-inorganic halide perovskite has been regarded as a promising candidate material for next-generation tandem solar cell due to not only their excellent optoelectronic properties but also their bandgap-tune-ability and low-temperature process-possibility. As a result, they have been adopted either as a wide-bandgap top cell combined with narrow-bandgap silicon or CuInxGa(1-x)Se2 bottom cells or for all-perovskite tandem solar cells using narrow- and wide-bandgap perovskites. To successfully transition perovskite materials from for single junction to tandem, substantial efforts need to focus on fabricating the high quality wide- and narrow-bandgap perovskite materials and semi-transparent electrode/recombination layer. In this paper, we present an overview of the current research and our outlook regarding perovskite-based tandem solar technology. Several key challenges discussed are: 1) a wide-bandgap perovskite for top-cell in multi-junction tandem solar cells; 2) a narrow-bandgap perovskite for bottom-cell in all-perovskite tandem solar cells, and 3) suitable semi-transparent conducting layer for efficient electrode or recombination layer in tandem solar cells.

Review on Tin Perovskite Solar Cells: Material and Device Properties (주석 페로브스카이트 태양전지에 관한 고찰: 재료 및 장치적 특성)

  • Dayeong Choi;Seyeong Lim;Hangyeol Kim
    • Current Photovoltaic Research
    • /
    • v.11 no.1
    • /
    • pp.18-26
    • /
    • 2023
  • Tin perovskite solar cells have attracted a lot of attention due to their potential to address the toxicity of lead, which is the biggest barrier to commercialization of perovskite solar cells. Unlike other lead-free perovskite, tin perovskite have a direct bandgap, which is suitable for use as light harvesting, and relatively good stability, which has led to a lot of attention. Since the first tin perovskite solar cell was reported in 2014, it has achieved an impressive power conversion efficiency of 14.81%. However, this efficiency is still low compared to that of lead perovskite solar cells, and the stability of tin perovskite solar cells is also an issue that needs to be addressed. In this review, we will discuss the basic properties of the tin atom in comparison to the lead atom, and then discuss the crystal structure, phase transition, and basic properties of tin perovskite. We will then discuss the advantages, applications, challenges, and strategies of tin perovskite, In particular, we will focus on how to prevent the oxidation of tin, which is arguably the biggest challenge for using tin perovskite solar cells. At the end, we summarize the key factors that need to be addressed for higher efficiency and stability, emphasizing what is needed to commercialize tin perovskite solar cells.

Perovskite solar cell (페로브스카이트 태양전지)

  • Lee, Jin-Wook;Park, Nam-Gyu
    • Vacuum Magazine
    • /
    • v.1 no.4
    • /
    • pp.10-13
    • /
    • 2014
  • Since the development of 9.7% efficient long-term stable solid state perovskite solar cell in 2012, intensive study on perovskite solar cell has been performed. As a result, power conversion efficiency (PCE) has reached 20.1%. In-dept study on perovskite light absorber enabled understanding of origin of superb photovoltaic performance of perovskite solar cell. In this article, historical evolutions of perovskite solar cell along with key physical properties enabling high PCE are presented. Several important results for development of high efficiency perovskite solar cell are introduced. Finally, in-present research issues and future direction for solving these issues are discussed.

The Characteristics of HTM Free Perovskite Solar Cell with Gas Pressure Assisted Modified Fabrication Process

  • Jo, Man-Sik;Jang, Ji-Hun;Song, Sang-U;Hwang, Jae-Won;Han, Gwang-Hui;Kim, Dong-U;Mun, Byeong-Mu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.415.1-415.1
    • /
    • 2016
  • 2009년도에 Perovskite가 태양전지에 처음 적용된 이후, Perovskite를 기반으로 하는 태양전지는 급속한 발전을 이루고 있으나, 향후 상용화를 위해서는 추가적인 공정개선 및 제조 단가를 낮추는 노력이 필수적이다. 초창기 Perovskite의 증착 공정은 One step deposition 방법이 사용되었으나, Layer의 thickness, uniformity 등을 조절하기 어려워 Sequential deposition 방법으로 개선되었다. 하지만 결과적으로 초기방법 대비 추가공정이 발생함에 따라 시간 및 비용의 증가가 불가피하였다. 제조단가 측면에서는 Perovskite 태양전지를 구성하는 재료 중 HTM(정공수송물질)을 구성하는 Spiro-MeOTAD의 비용이 가장 비싸다. 따라서 저비용 태양전지를 위해서는 HTM이 없는 구조가 필요하다. 이 페이퍼에서는 Perovskite 물질이 고흡광 능력 외에 충분한 전하수송능력을 보유한다는 점에 착안하여, Gas Pressure Assisted Modified One Step Deposition을 이용한 HTM Free Perovskite를 제작하고 기존의 Sequential Deposition Method 통해 만들어진 Perovskite 태양전지와 비교/분석하였다.

  • PDF

Fabrication High Covered and Uniform Perovskite Absorbing Layer With Alkali Metal Halide for Planar Hetero-junction Perovskite Solar Cells

  • Lee, Hongseuk;Kim, Areum;Kwon, Hyeok-chan;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.427-427
    • /
    • 2016
  • Organic-inorganic hybrid perovskite have attracted significant attention as a new revolutionary light absorber for photovoltaic device due to its remarkable characteristics such as long charge diffusion lengths (100-1000nm), low recombination rate, and high extinction coefficient. Recently, power conversion efficiency of perovskite solar cell is above 20% that is approached to crystalline silicon solar cells. Planar heterojunction perovskite solar cells have simple device structure and can be fabricated low temperature process due to absence of mesoporous scaffold that should be annealed over 500 oC. However, in the planar structure, controlling perovskite film qualities such as crystallinity and coverage is important for high performances. Those controlling methods in one-step deposition have been reported such as adding additive, solvent-engineering, using anti-solvent, for pin-hole free perovskite layer to reduce shunting paths connecting between electron transport layer and hole transport layer. Here, we studied the effect of alkali metal halide to control the fabrication process of perovskite film. During the morphology determination step, alkali metal halides can affect film morphologies by intercalating with PbI2 layer and reducing $CH3NH3PbI3{\cdot}DMF$ intermediate phase resulting in needle shape morphology. As types of alkali metal ions, the diverse grain sizes of film were observed due to different crystallization rate depending on the size of alkali metal ions. The pin-hole free perovskite film was obtained with this method, and the resulting perovskite solar cells showed higher performance as > 10% of power conversion efficiency in large size perovskite solar cell as $5{\times}5cm$. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma optical emission spectrometry (ICP-OES) are analyzed to prove the mechanism of perovskite film formation with alkali metal halides.

  • PDF

Emergence and Evolution of Organometal Halide Perovskite Solar Cell

  • Park, Nam-Gyu
    • Rapid Communication in Photoscience
    • /
    • v.4 no.2
    • /
    • pp.29-30
    • /
    • 2015
  • Since the first report on long-term durable perovskite solar cell in 2012, a surge of interest in perovskite solar cell has been received due to its superb photovoltaic performance exceeding 20%. $MAPbI_3$ ($MA=CH_3NH_3$) perovskite film is able to be prepared simply by solution processesof either sequential two-step or single step procedure. Since $MAPbI_3$ shows balanced charge transport property with micrometer scale charge diffusion length, it can be applied to any kind of junction structures. Mostly studied structure is mesoscopic structure employing mesoporous oxide layer in perovskite film. Photovoltaic performance is primarilyin fluenced by the quality of perovskite film but interfaces are equally important. In this mini review, emergence and evolution of perovskite solar cell are described.

Recent Research Progress on Eco-Friendly Perovskite Solar Cells (친환경 페로브스카이트 태양전지 최신 기술 동향)

  • You, Hyung Ryul;Choi, Jongmin
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.104-111
    • /
    • 2019
  • Metal halide perovskite materials are considered as promising semiconducting materials for next-generation solar cells due to their unique electrical and optical properties. Intensive progress in perovskite solar cell yielded a certified power conversion efficiency over 24%. However, most of highly efficient perovskite solar cells required Pb-based perovskite materials, which is a critical obstacle for their commercialization, and development of Pb-free perovskite materials is one of recent urgent issues in this field. In this paper, we will introduce recent research progress on Pb-free perovskite solar cells.

Properties of the carbon electrode perovskite solar cells with various annealing processes (열처리 방법에 따른 카본전극 페로브스카이트 태양전지의 특성 변화)

  • Song, Ohsung;Kim, Kwangbea
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.26-32
    • /
    • 2021
  • The photovoltaic properties and microstructure changes were observed while perovskite solar cells (PSCs) with a fabricated carbon electrode were formed using the following annealing processes: hot-plate, oven, and rapid thermal annealing (RTA). Perovskite solar cells with a glass/FTO/compact TiO2/meso TiO2/meso ZrO2/carbon structure were prepared. The photovoltaic properties and microstructure changes in the PSCs were analyzed using a solar simulator, optical microscopy, and field emission scanning electron microscopy. An analysis of the photovoltaic properties revealed outstanding properties when RTA was applied to the cells. Microstructure analysis showed that perovskite was formed locally on the carbon electrode surface when hot-plate and oven annealing were applied. On the other hand, PSC with RTA showed a flat surface without extra perovskite agglomeration. Denser perovskite formed on the porous carbon electrode layer with RTA showed superior photovoltaic properties. These results suggest that the RTA process might be appropriate for the massive production of carbon electrode PSCs considering the processing time.

Ferroelectric Characteristics of Pb-containing Perovskite-Pyrochlore Composites (Pb계 Perovskite-Pyrochlore 복합체의 강유전특성)

  • 조진우;손정호;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.500-504
    • /
    • 1997
  • Perovskite Pb0.7Ba0.3Zn1/3Nb2/3O3 substituted with 0.3 mole fraction for Pb-site in PbZn1/3Nb2/3O3 relaxor and pyrochlore Pb1.83Ba0.29Zn1.71Nb2/3O6.39 were mixed and dielectric characteristics of this composites were investigated. Percolation limit of perovskite phase, which was determined by microstructural observation in the composite as an isolation of perovskite phase from pyrochlore matrix, was 28.9-47.5 vol%. Ferroelectric phase transition below percolation limit depends on a parameter which affects the propagation of lattice vibration between isolated perovskite phase and pyrochlore matrix. Therefore, it is believed that ferroelectric lattice vibration of isolated perovskite phase could be transfered to pyrochlore matrix when the oxygen octahedra are linked in 3-dimension and highly polarizable Pb2+ ions are contained in both phases.

  • PDF

페로브스카이트 태양전지용 홀 전도체 개발과 비납계 페로브스카이트 연구 동향

  • Song, Myeong-Gwan
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.98-111
    • /
    • 2018
  • The lead-based perovskite (CH3NH3PbI3) material has a high molar coefficient, high crystallinity at low temperature, and long range of balanced electron-hole transport length. In addition, PCE of perovskite solar cells (PSCs) has been dramatically improved by over 22% by amending the electronic quality of perovskite and by using state-of-the-art hole transporting materials (HTMs) such as tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) due to enhanced charge transport toward the electrode via properly aligned energy levels with respect to the perovskite. Replacing the spiro-OMeTAD with new HTMs with the desired properties of appropriate energy levels, high hole mobility in its pristine form, low cost, and easy processable materials is necessary for attaining highly efficient and stable PSCs, which are anticipated to be truly compatible for practical application. Furthermore, Recently Pb-free perovskite materials much attention as an alternative light-harvesting active layer material instead of lead based perovskite in photovoltaic cells. In this work, we demonstrate a Pb-free perovskite material for the light harvesting and emitter as optoelectronic devices.