• Title/Summary/Keyword: 뉴런모스

Search Result 7, Processing Time 0.02 seconds

MVL Data Converters Using Neuron MOS Down Literal Circuit (뉴런모스 다운리터럴 회로를 이용한 다치논리용 데이터 변환기)

  • Han, Sung-Il;Na, Gi-Soo;Choi, Young-Hee;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.135-143
    • /
    • 2003
  • This paper describes the design techniques of the data converters for Multiple-Valued Logic(MVL). A 3.3V low power 4 digit CMOS analog to quaternary converter (AQC) and quaternary to analog converter (QAC) mainly designed with the neuron MOS down literal circuit block has been introduced. The neuron MOS down literal architecture allows the designed AQC and QAC to accept analog and 4 level voltage inputs, and enables the proposed circuits to have the multi-threshold properity. Low power consumption of the AQC and QAC are achieved by utilizing the proposed architecture.

  • PDF

(A Study on the Design of Analog Converter Using Neuron MOS) (뉴런모스를 이용한 아날로그 변환기 설계에 관한 연구)

  • Han, Seong-Il;Park, Seung-Yong;Kim, Heung-Su
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.3
    • /
    • pp.201-210
    • /
    • 2002
  • This paper describes a 3.3 (V) low power 4 digit CMOS quaternary to analog converter (QAC) designed with a neuron MOS($\upsilon$MOS) down literal circuit block and cascode current mirror source block. The neuron MOS down literal architecture allows the designed QAC to accept not only 4 level voltage inputs, but also a high speed sampling rate quaternary voltage source LSB. Fast settling time and low power consumption of the QAC are achieved by utilizing the proposed architecture. The simulation results of the designed 4 digit QAC show a sampling rate of 6(MHz) and a power dissipation of 24.5 (mW) with a single power supply of 3.3 (V) for a CMOS 0.35${\mu}{\textrm}{m}$ n-well technology.

Design of a Capacitive Detection Circuit using MUX and DLC based on a vMOS (vMOS 기반의 DLC와 MUX를 이용한 용량성 감지회로)

  • Jung, Seung-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.4
    • /
    • pp.63-69
    • /
    • 2012
  • This paper describes novel scheme of a gray scale capacitive fingerprint image for high-accuracy capacitive sensor chip. The typical gray scale image scheme used a DAC of big size layout or charge-pump circuit of non-volatile memory with high power consumption and complexity by a global clock signal. A modified capacitive detection circuit of charge sharing scheme is proposed, which uses DLC(down literal circuit) based on a neuron MOS(vMOS) and analog simple multiplexor. The detection circuit is designed and simulated in 3.3V, $0.35{\mu}m$ standard CMOS process. Because the proposed circuit does not need a comparator and peripheral circuits, a pixel layout size can be reduced and the image resolution can be improved.

Generalization of Recurrent Cascade Correlation Algorithm and Morse Signal Experiments using new Activation Functions (순환 케스케이드 코릴레이션 알고리즘의 일반화와 새로운 활성화함수를 사용한 모스 신호 실험)

  • Song Hae-Sang;Lee Sang-Wha
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.53-63
    • /
    • 2004
  • Recurrent-Cascade-Correlation(RCC) is a supervised teaming algorithm that automatically determines the size and topology of the network. RCC adds new hidden neurons one by one and creates a multi-layer structure in which each hidden layer has only one neuron. By second order RCC, new hidden neurons are added to only one hidden layer. These created neurons are not connected to each other. We present a generalization of the RCC Architecture by combining the standard RCC Architecture and the second order RCC Architecture. Whenever a hidden neuron has to be added, the new RCC teaming algorithm automatically determines whether the network topology grows vertically or horizontally. This new algorithm using sigmoid, tanh and new activation functions was tested with the morse-benchmark-problem. Therefore we recognized that the number of hidden neurons was decreased by the experiments of the RCC network generalization which used the activation functions.

  • PDF

Quaternary D Flip-Flop with Advanced Performance (개선된 성능을 갖는 4치 D-플립플롭)

  • Na, Gi-Soo;Choi, Young-Hee
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.14-20
    • /
    • 2007
  • This paper presents quaternary D flip-flop with advanced performance. Quaternary D flip-flop is composed of the components such as thermometer code output circuit, EX-OR gate, bias inverter, transmission gate and binary D flip-flop circuit. The designed circuit is simulated by HSPICE in $0.35{\mu}m$ one-poly six-metal CMOS process parameters with a single +3.3V supply voltage. In the simulations, sampling frequencies is measured around 100MHz. The PDP parameters and FOM we estimated to be 59.3fJ, 33.7 respectively.

A Study on the Parallel Multiplier over $GF(3^m)$ Using AOTP (AOTP를 적용한 $GF(3^m)$ 상의 병렬승산기 설계에 관한 연구)

  • Han, Sung-Il;Hwang, Jong-Hak
    • Journal of IKEEE
    • /
    • v.8 no.2 s.15
    • /
    • pp.172-180
    • /
    • 2004
  • In this paper, a parallel Input/Output modulo multiplier, which is applied to AOTP(All One or Two Polynomials) multiplicative algorithm over $GF(3^m)$, has been proposed using neuron-MOS Down-literal circuit on voltage mode. The three-valued input of the proposed multiplier is modulated by using neuron-MOS Down-literal circuit and the multiplication and Addition gates are implemented by the selecting of the three-valued input signals transformed by the module. The proposed circuits are simulated with the electrical parameter of a standard $0.35{\mu}m$CMOS N-well doubly-poly four-metal technology and a single +3V supply voltage. In the simulation result, the multiplier shows 4 uW power consumption and 3 MHzsampling rate and maintains output voltage level in ${\pm}0.1V$.

  • PDF

Design of Synchronous Quaternary Counter using Quaternary Logic Gate Based on Neuron-MOS (뉴런 모스 기반의 4치 논리게이트를 이용한 동기식 4치 카운터 설계)

  • Choi Young-Hee;Yoon Byoung-Hee;Kim Heung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.3 s.333
    • /
    • pp.43-50
    • /
    • 2005
  • In this paper, quaternary logic gates using Down literal circuit(DLC) has been designed, and then synchronous Quaternary un/down counter using those gates has been proposed The proposed counter consists of T-type quaternary flip flop and 1-of-2 threshold-t MUX, and T-type quaternary flip flop consists of D-type quaternary flip flop and quaternary logic gates(modulo-4 addition gates, Quaternary inverter, identity cell, 1-of-4 MUX). The simulation result of this counter show delay time of 10[ns] and power consumption of 8.48[mW]. Also, assigning the designed counter to MVL(Multiple-valued Logic) circuit, it has advantages of the reduced interconnection and chip area as well as easy expansion of digit.