Kim, Joong Il;Park, Bumhee;Youn, Tak;Park, Hae-Jeong
Sleep Medicine and Psychophysiology
/
v.25
no.2
/
pp.82-91
/
2018
Objectives: Synchronous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) has been used to explore sleep stage dependent functional brain networks. Despite a growing number of sleep studies using EEG-fMRI, few studies have conducted network analysis on whole night sleep due to difficulty in data acquisition, artifacts, and sleep management within the MRI scanner. Methods: In order to perform network analysis for whole night sleep, we proposed experimental procedures and data processing techniques for EEG-fMRI. We acquired 6-7 hours of EEG-fMRI data per participant and conducted signal processing to reduce artifacts in both EEG and fMRI. We then generated a functional brain atlas with 68 brain regions using independent component analysis of sleep fMRI data. Using this functional atlas, we constructed sleep level dependent functional brain networks. Results: When we evaluated functional connectivity distribution, sleep showed significantly reduced functional connectivity for the whole brain compared to that during wakefulness. REM sleep showed statistically different connectivity patterns compared to non-REM sleep in sleep-related subcortical brain circuits. Conclusion: This study suggests the feasibility of exploring functional brain networks using sleep EEG-fMRI for whole night sleep via appropriate experimental procedures and signal processing techniques for fMRI and EEG.
Purpose : The purpose of this study is to establish the method generating human brain anatomical connectivity from Korean children and evaluating the network topological properties using small-world network analysis. Materials and Methods : Using diffusion tensor images (DTI) and parcellation maps of structural MRIs acquired from twelve healthy Korean children, we generated a brain structural connectivity matrix for individual. We applied one sample t-test to the connectivity maps to derive a representative anatomical connectivity for the group. By spatially normalizing the white matter bundles of participants into a template standard space, we obtained the anatomical brain network model. Network properties including clustering coefficient, characteristic path length, and global/local efficiency were also calculated. Results : We found that the structural connectivity of Korean children group preserves the small-world properties. The anatomical connectivity map obtained in this study showed that children group had higher intra-hemispheric connectivity than inter-hemispheric connectivity. We also observed that the neural connectivity of the group is high between brain stem and motorsensory areas. Conclusion : We suggested a method to examine the anatomical brain network of Korean children group. The proposed method can be used to evaluate the efficiency of anatomical brain networks in people with disease.
아기는 약 200억 개의 뇌세포를 가지고 바깥 세상에 태어난다. 게다가 더 놀라운 사실은 이 200억 개의 뇌세포가 또다시 각각 2만 개 이상의 다른 가지들로 연결되면서 신경망을 형성해 나간다는 것이다. 이 신경 전달망이 바로 아이 인생의 절대적인 영향을 끼치는 잠재력의 근원이다. 다시 말해 똑똑한 아이일수록 이 신경망들이 숫자도 훨씬 많고 복잡하게 얽혀있다는 것이다. 그러나 이렇게 형성된 뇌세포들은 적절한 연락이 오지 않으면 스스로 쓸모없다고 판단하여 임신 8개월 전에 40~75% 가량이 죽어버린다.
Journal of the Korea Society of Computer and Information
/
v.26
no.7
/
pp.37-44
/
2021
Automatic classification of brain MRI images play an important role in early diagnosis of brain tumors. In this work, we present a deep learning-based brain tumor classification model in MRI images using ensemble of deep features. In our proposed framework, three different deep features from brain MR image are extracted using three different pre-trained models. After that, the extracted deep features are fed to the classification module. In the classification module, the three different deep features are first fed into the fully-connected layers individually to reduce the dimension of the features. After that, the output features from the fully-connected layers are concatenated and fed into the fully-connected layer to predict the final output. To evaluate our proposed model, we use openly accessible brain MRI dataset from web. Experimental results show that our proposed model outperforms other machine learning-based models.
An artificial neural network is a computational model that mimics the biological system of the brain and it consists of a number of interconnected processing units where it can reasonably infer by them. Because the neural network is particularly useful for evaluating systems with a multitude of nonlinear variables, it can be used in experimental results predictions, in structural planning and in optimum design of structures. This paper describes the basic theory related to the neural networks and discusses the applicability of neural networks to predict the ultimate shear capacity of the precast concrete vertical joints by comparing the neural networks with a conventional method such as regression.
Spatial neglect is a neurological disorder following stroke, a lesion that usually affects the right hemisphere, fail to process or attention on the contralateral side of body and space. Functional neuroimaging studies report that spatial neglect is associated with lesions of large middle cerebral artery, perisylvian network and attention network. Spatial neglect is associated with a poor outcome. For optimal diagnosis and intervention, Types and theories of spatial neglect should be considered, in addition to clinical assessment with the conventional test and functional test. The treatment for spatial neglect could be consist of top-down approaches and bottom-up approaches. Recent trends in rehabilitation intervention for spatial neglect have reported prism adaptation.
Proceedings of the Korean Society of Medical Physics Conference
/
2003.09a
/
pp.81-81
/
2003
목적 : 현재, 많은 병원이 방사선과 의료영상정보를 기존의 필름형태로 판독하고, 진료하는 방식에서 PACS 를 도입하여 디지털 형태로 영상을 전송, 저장, 검색, 판독하는 환경으로 변화하고 있다. 한편, PACS 가 가지는 가장 큰 제한점은 휴대성의 결핍이다. 본 연구는 이동형 장치가 가지는 호스트의 이동성 및 휴대성의 장점들을 살리면서, 무선 채널 용량의 한계, 무선 링크 사용이라는 제약점들을 감안하여 의료영상을 JPEG2000 영상압축 방식으로 부호화한 후 무선 환경을 고려한 전송 패킷의 크기를 결정하고자 하였으며, 무선 통신 중 발생되는 패킷 손실에 대응하기 위한 자동 오류 수정 기능도 함께 구현하고자하였다. 방법 : Window 2000 운영체계에서 의료영상을 로드하고, 데이터베이스화하며, 저장하고, 다른 네트워크와 접속, 제어가 가능한 PC급 서버를 구축하였다. 영상데이터는 무선망을 통해 전송하기 때문에 가장 높은 압축비율을 지원하면서 에너지 밀도가 높은 JPEG2000 알고리즘을 사용하여 영상을 압축하였다. 또한, 무선망 사용으로 인한 패킷 손실에 대비하여, 영상을 JPEG2000 방식으로 부호화한 후 각 블록단위로 전송하였다. 결과 : PDA에서 JPEG2000 영상을 복호화 하는데 걸리는 시간은 256$\times$256 크기의 MR 뇌영상의 경우 바로 확인할 수 있었지만, 800$\times$790 크기의 CR 흉부 영상의 경우 약 5 초 정도의 시간이 걸렸다. CDMA 1X(Code Division Multiple Access 1st Generation) 모듈을 사용하여 영상을 전송하는 경우, 256 byte/see 정도에서는 안정된 전송 결과를 보여주었고, 1 Kbyte/see 정도의 전송의 경우 중간 중간에 패킷이 손실되는 결과를 관찰할 수 있었다. 반면 무선 랜의 경우 이보다 더 큰 패킷을 전송하더라도 문제점은 발견되지 않았다. 결론 : 현재의 PACS는 유선과 무선사이의 인터페이스의 부재로 인해 유무선 연동이 되지 못하고 있다. 따라서 이동형 JPEG2000 영상 뷰어는 PACS가 가지는 문제점인 휴대성을 보완하기 위하여 개발되었다. 또한 무선망이 가지는 데이터 손실에 대하여서도 허용할 수 있는 범위에서 재전송을 가능하게 함으로서 약한 연결성을 보완하였다. 본 JPEG2000 영상 뷰어 시스템은 기존 유선상의 PACS와 이동형 장치간에 유기적인 인터페이스 역할을 하리라 기대된다.
Recent research on mild cognitive impairment (MCI) has shown that cognitive and memory decline in this disease is accompanied by disruptive changes in the brain functional network. However, there have been no graph-theoretical studies using $^{11}C$-PIB PET data of the Alzheimer's Disease or mild cognitive impairment. In this study, we acquired $^{18}F$-FDG PET and $^{11}C$-PIB PET images of twenty-four normal aging control participants and thirty individuals with MCI from ADNI (Alzheimer's Disease Neuroimaging Initiative) database. Brain networks were constructed by thresholding binary correlation matrices using graph theoretical approaches. Both normal control and MCI group showed small-world property in $^{11}C$-PIB PET images as well as $^{18}F$-FDG PET images. $^{11}C$-PIB PET images showed significant difference between NC (normal control) and MCI over large range of sparsity values. This result will enable us to further analyze the brain using established graph-theoretical approaches for $^{11}C$-PIB PET images.
Retrieving temporal information of encoded events is one of the core control processes in episodic memory. Despite much prior neuroimaging research on episodic retrieval, little is known about how large-scale connectivity patterns are involved in the retrieval of sequentially organized episodes. Task-related functional connectivity multivariate pattern analysis was used to distinguish the different sequential retrieval. In this study, participants performed temporal episodic memory tasks in which they were required to retrieve the encoded items in either the forward or backward direction. While separately parsed local networks did not yield substantial efficiency in classification performance, the large-scale patterns of interactivity across the cortical and sub-cortical brain regions implicated in both the cognitive control of memory and goal-directed cognitive processes encompassing lateral and medial prefrontal regions, inferior parietal lobules, middle temporal gyrus, and caudate yielded high discriminative power in classification of temporal retrieval processes. These findings demonstrate that mnemonic control processes across cortical and subcortical regions are recruited to re-experience temporally-linked series of memoranda in episodic memory and are mirrored in the qualitatively distinct global network patterns of functional connectivity.
Cognitive reserve(CR) is the ability to optimize or maximize performance through complementary brain networks. CR is relevant to normal aging in cognitive-linguistic abilities. There are few domestic systematic reviews or meta-analyses that analyze the relationships between multiple CR and cognitive-linguistic domains in healthy older people. This meta-analysis included 32 studies published since 2000. In result, education level topped the list, followed by the occupation, cognitively stimulating activities, and the multilingualism. Most studies were related to memory, global cognition, and language. CR had a modest positive association with cognitive-linguistic performance. Multiple domains including memory and language also showed the significant correlations across most measures of CR. This study provides evidence-based information to support cognitive-linguistic ability in normal aging.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.