DOI QR코드

DOI QR Code

Interactivity within large-scale brain network recruited for retrieval of temporally organized events

시간적 일화기억인출에 관여하는 뇌기능연결성 연구

  • Nah, Yoonjin (Department of Psychology, Yonsei University) ;
  • Lee, Jonghyun (Graduate Program in Cognitive Science, Yonsei University) ;
  • Han, Sanghoon (Department of Psychology, Yonsei University)
  • 나윤진 (연세대학교 심리학과) ;
  • 이종현 (연세대학교 인지과학 협동과정) ;
  • 한상훈 (연세대학교 심리학과)
  • Received : 2018.07.23
  • Accepted : 2018.08.08
  • Published : 2018.09.30

Abstract

Retrieving temporal information of encoded events is one of the core control processes in episodic memory. Despite much prior neuroimaging research on episodic retrieval, little is known about how large-scale connectivity patterns are involved in the retrieval of sequentially organized episodes. Task-related functional connectivity multivariate pattern analysis was used to distinguish the different sequential retrieval. In this study, participants performed temporal episodic memory tasks in which they were required to retrieve the encoded items in either the forward or backward direction. While separately parsed local networks did not yield substantial efficiency in classification performance, the large-scale patterns of interactivity across the cortical and sub-cortical brain regions implicated in both the cognitive control of memory and goal-directed cognitive processes encompassing lateral and medial prefrontal regions, inferior parietal lobules, middle temporal gyrus, and caudate yielded high discriminative power in classification of temporal retrieval processes. These findings demonstrate that mnemonic control processes across cortical and subcortical regions are recruited to re-experience temporally-linked series of memoranda in episodic memory and are mirrored in the qualitatively distinct global network patterns of functional connectivity.

부호화된 사건의 시간적 정보를 기반으로 한 인출은 일화기억의 중요한 통제기제 중 하나이다. 기억인출과 관련한 수많은 신경영상 연구들이 진행되었음에도 아직 시간적으로 구성된 일화기억의 인출에 관여하는 뇌신경연결망 패턴에 대해서는 알려진 바가 많지 않다. 본 연구에서는 두가지 다른 순차적 인출 뇌신경 기제를 구분하기 위하여 과제기반 기능적 연결성 다변량 패턴분석 방법을 사용하였다. 참가자들은 시간적 일화기억과제를 수행하였고, 순서대로 부호화된 기억자극을 순방향 혹은 역방향으로 인출하도록 지시를 받았다. 부분적으로 분류된 국소적 신경네트워크 패턴은 두 인출기제를 잘 구분하지 못한 반면, 기억과 관련된 인지통제 영역과 목표-지향적 인지기제처리에 관련된 것으로 알려진 여러 피질-피질하 노드들을 아우르는 전뇌신경네트워크 패턴은 시간적 일화기억 인출기제를 잘 구분하였다. 이 영역들은 측면/내측 전전두엽 영역, 하부 두정엽, 중간 측두회, 선조체 영역 등을 포함하며 기계학습을 이용한 분류에서 높은 분류 예측률을 보였다. 본 연구의 결과는 일화기억의 시간적 인출기제에 관여하는 피질-피질하 여러 영역의 관여를 확인하였고, 대역적 네트워크 패턴의 기능적 연결성이 질적으로 다른 인출기제에 관여함을 확인하였다는데에 중요성을 갖는다.

Keywords

References

  1. Anders, T. R., & Lillyquist, T. D. (1971). Retrieval time in forward and backward recall. Psychonomic Science, 22, 205-206. https://doi.org/10.3758/BF03332570
  2. Badre, D., & D'Esposito, M. (2007). Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. Journal of Cognitive Neuroscience, 19, 2082-2099. https://doi.org/10.1162/jocn.2007.19.12.2082
  3. Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47, 907-918. https://doi.org/10.1016/j.neuron.2005.07.023
  4. Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45, 2883-2901. https://doi.org/10.1016/j.neuropsychologia.2007.06.015
  5. Barnes, K. A., Cohen, A. L., Power, J. D., Nelson, S. M., Dosenbach, Y. B., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. (2010). Identifying basal ganglia divisions in individuals using resting-state functional connectivity MRI. Frontiers in Systems Neuroscience, 4, 18.
  6. Barredo, J., Oztekin, I., & Badre, D. (2015). Ventral fronto-temporal pathway supporting cognitive control of episodic memory retrieval. Cerebral Cortex, 25, 1004-1019. https://doi.org/10.1093/cercor/bht291
  7. Barredo, J., Verstynen, T. D., & Badre, D. (2016). Organization of cortico-cortical pathways supporting memory retrieval across subregions of the left ventrolateral prefrontal cortex. J Neurophysiol, 116, 920-937. https://doi.org/10.1152/jn.00157.2016
  8. Cabeza, R., Ciaramelli, E., Olson, I. R., & Moscovitch, M. (2008). The parietal cortex and episodic memory: an attentional account. Nature Reviews Neuroscience, 9, 613-625. https://doi.org/10.1038/nrn2459
  9. Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: from environment to theory of mind. Neuron, 58, 306-324. https://doi.org/10.1016/j.neuron.2008.04.017
  10. Cortes, C., & Vapnik, V. N. (1995). Support-vector networks. Machine Learning, 20, 273-297.
  11. D'Esposito, M., Postle, B. R., & Rypma, B. (2000). Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Experimental Brain Research, 133, 3-11. https://doi.org/10.1007/s002210000395
  12. Deichmann, R., Gottfried, J. A., Hutton, C., & Turner, R. (2003). Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage, 19, 430-441. https://doi.org/10.1016/S1053-8119(03)00073-9
  13. Dobbins, I. G., & Han, S. (2006). Cue- versus probe-dependent prefrontal cortex activity during contextual remembering. Journal of Cognitive Neuroscience, 18, 1439-1452. https://doi.org/10.1162/jocn.2006.18.9.1439
  14. Drosopoulos, S., Windau, E., Wagner, U., & Born, J. (2007). Sleep enforces the temporal order in memory. PLoS One, 2, e376. https://doi.org/10.1371/journal.pone.0000376
  15. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 35-41.
  16. Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social networks, 1, 215-239. https://doi.org/10.1016/0378-8733(78)90021-7
  17. Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connect, 1, 13-36. https://doi.org/10.1089/brain.2011.0008
  18. Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage, 6, 218-229. https://doi.org/10.1006/nimg.1997.0291
  19. Friston, K. J., Glaser, D. E., Henson, R. N., Kiebel, S., Phillips, C., & Ashburner, J. (2002). Classical and Bayesian inference in neuroimaging: applications. Neuroimage, 16, 484-512. https://doi.org/10.1006/nimg.2002.1091
  20. Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proc Natl Acad Sci U S A, 99, 7821-7826. https://doi.org/10.1073/pnas.122653799
  21. Grahn, J. A., Parkinson, J. A., & Owen, A. M. (2008). The cognitive functions of the caudate nucleus. Progress in Neurobiology, 86, 141-155. https://doi.org/10.1016/j.pneurobio.2008.09.004
  22. Han, S., O'Connor, A. R., Eslick, A. N., & Dobbins, I. G. (2012). The role of left ventrolateral prefrontal cortex during episodic decisions: semantic elaboration or resolution of episodic interference? Journal of Cognitive Neuroscience, 24, 223-234. https://doi.org/10.1162/jocn_a_00133
  23. Koechlin, E., Basso, G., Pietrini, P., Panzer, S., & Grafman, J. (1999). The role of the anterior prefrontal cortex in human cognition. Nature, 399, 148-151. https://doi.org/10.1038/20178
  24. Kruschwitz, J. D., List, D., Waller, L., Rubinov, M., & Walter, H. (2015). GraphVar: a user-friendly toolbox for comprehensive graph analyses of functional brain connectivity. J Neurosci Methods, 245, 107-115. https://doi.org/10.1016/j.jneumeth.2015.02.021
  25. Lezak, M. D. (1995). Neuropsychological assessment. New York: Oxford University Press.
  26. Marklund, P., Larsson, A., Elgh, E., Linder, J., Riklund, K. A., Forsgren, L., & Nyberg, L. (2009). Temporal dynamics of basal ganglia under-recruitment in Parkinson's disease: transient caudate abnormalities during updating of working memory. Brain, 132, 336-346.
  27. Moss, H. E., Abdallah, S., Fletcher, P., Bright, P., Pilgrim, L., Acres, K., & Tyler, L. K. (2005). Selecting among competing alternatives: selection and retrieval in the left inferior frontal gyrus. Cerebral Cortex, 15, 1723-1735. https://doi.org/10.1093/cercor/bhi049
  28. Neubert, F. X., Mars, R. B., Thomas, A. G., Sallet, J., & Rushworth, M. F. (2014). Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron, 81, 700-713. https://doi.org/10.1016/j.neuron.2013.11.012
  29. Pantazatos, S. P., Talati, A., Pavlidis, P., & Hirsch, J. (2012a). Cortical functional connectivity decodes subconscious, task-irrelevant threat-related emotion processing. Neuroimage, 61, 1355-1363. https://doi.org/10.1016/j.neuroimage.2012.03.051
  30. Pantazatos, S. P., Talati, A., Pavlidis, P., & Hirsch, J. (2012b). Decoding unattended fearful faces with whole-brain correlations: an approach to identify condition-dependent large-scale functional connectivity. PLoS Computational Biology, 8, e1002441. https://doi.org/10.1371/journal.pcbi.1002441
  31. Pantazatos, S. P., Talati, A., Schneier, F. R., & Hirsch, J. (2014). Reduced anterior temporal and hippocampal functional connectivity during face processing discriminates individuals with social anxiety disorder from healthy controls and panic disorder, and increases following treatment. Neuropsychopharmacology, 39, 425-434. https://doi.org/10.1038/npp.2013.211
  32. Pirogovsky, E., Goldstein, J., Peavy, G., Jacobson, M. W., Corey-Bloom, J., & Gilbert, P. E. (2009). Temporal order memory deficits prior to clinical diagnosis in Huntington's disease. Journal of the International Neuropsychological Society, 15, 662-670. https://doi.org/10.1017/S1355617709990427
  33. Raposo, A., Han, S., & Dobbins, I. G. (2009). Ventrolateral prefrontal cortex and self-initiated semantic elaboration during memory retrieval. Neuropsychologia, 47, 2261-2271. https://doi.org/10.1016/j.neuropsychologia.2008.10.024
  34. Sagar, H. J., Sullivan, E. V., Gabrieli, J. D., Corkin, S., & Growdon, J. H. (1988). Temporal ordering and short-term memory deficits in Parkinson's disease. Brain, 111, 525-539. https://doi.org/10.1093/brain/111.3.525
  35. Schofield, N. J., & Ashman, A. F. (1986). The relationship between digit span and cognitive processing across ability groups. Intelligence, 10, 59-73. https://doi.org/10.1016/0160-2896(86)90027-9
  36. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27, 2349-2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007
  37. Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22, 158-165. https://doi.org/10.1093/cercor/bhr099
  38. Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., He, Y., Yan, C. G., & Zang, Y. F. (2011). REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One, 6, e25031. https://doi.org/10.1371/journal.pone.0025031
  39. Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage, 53, 303-317. https://doi.org/10.1016/j.neuroimage.2010.06.016
  40. Storandt, M., Kaskie, B., & Von Dras, D. D. (1998). Temporal memory for remote events in healthy aging and dementia. Psychology and Aging, 13, 4-7. https://doi.org/10.1037/0882-7974.13.1.4
  41. Sun, X., Zhang, X., Chen, X., Zhang, P., Bao, M., Zhang, D., Chen, J., He, S., & Hu, X. (2005). Age-dependent brain activation during forward and backward digit recall revealed by fMRI. Neuroimage, 26, 36-47. https://doi.org/10.1016/j.neuroimage.2005.01.022
  42. Takahashi, E., Ohki, K., & Kim, D. S. (2007). Diffusion tensor studies dissociated two fronto-temporal pathways in the human memory system. Neuroimage, 34, 827-838. https://doi.org/10.1016/j.neuroimage.2006.10.009
  43. Thomas, J. G., Milner, H. R., & Haberlandt, K. F. (2003). Forward and backward recall: different response time patterns, same retrieval order. Psychological Science, 14, 169-174. https://doi.org/10.1111/1467-9280.01437
  44. Thompson-Schill, S. L., D'Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proceedings of the National Academy of Sciences, U.S.A., 94, 14792-14797. https://doi.org/10.1073/pnas.94.26.14792
  45. Thompson-Schill, S. L., D'Esposito, M., & Kan, I. P. (1999). Effects of repetition and competition on activity in left prefrontal cortex during word generation. Neuron, 23, 513-522. https://doi.org/10.1016/S0896-6273(00)80804-1
  46. Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of memory (pp. 381-403). New York: Academic Press.
  47. Tulving, E. (1983). Elements of episodic memory. Oxford: Clarendon Press.
  48. Tulving, E. (2002). Episodic memory: from mind to brain. Annual Review of Psychology, 53, 1-25. https://doi.org/10.1146/annurev.psych.53.100901.135114
  49. Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10, 988-999. https://doi.org/10.1109/72.788640
  50. Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100, 3328-3342. https://doi.org/10.1152/jn.90355.2008
  51. Vriezen, E. R., & Moscovitch, M. (1990). Memory for temporal order and conditional associative-learning in patients with Parkinson's disease. Neuropsychologia, 28, 1283-1293. https://doi.org/10.1016/0028-3932(90)90044-O
  52. Wagner, A. D., Pare-Blagoev, E. J., Clark, J., & Poldrack, R. A. (2001). Recovering meaning: left prefrontal cortex guides controlled semantic retrieval. Neuron, 31, 329-338. https://doi.org/10.1016/S0896-6273(01)00359-2
  53. Wechsler, D. (2008). Wechsler adult intelligence scale-fourth edition (WAIS-IV). San Antonio: NCS Pearson.
  54. Yan, C. G., & Zang, Y. F. (2010). DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.