• 제목/요약/키워드: 농약분해

검색결과 237건 처리시간 0.027초

제초제(除草劑) Napropamide의 분해미생물(分解微生物)의 분리(分離) 및 분해특성(分解特性) (Isolation and Characteristics of Soil Microorganisms Degrading Herbicide Napropamide)

  • 한성수
    • 한국잡초학회지
    • /
    • 제15권1호
    • /
    • pp.63-72
    • /
    • 1995
  • 제초제(除草劑) Napropamide의 분해능(分解能)이 뛰어난 균주(菌株)를 선발(選拔)하고 그의 분해특성(分解特性)을 구명(究明)할 목적(目的)으로 농약(農藥) 무처리토양(無處理土壤)으로부터 세균(細菌)을 분리(分離)한 후(後) 이들 균(菌)을 Napropamide 함유(含有) NB배지(培地)에 접종(接種)하여 생존력(生存力)과 Napropamide 분해능(分解能)을 조사(調査)하였으며, 분해능(分解能)이 우수(優秀)한 세균(細菌)에 대해 Napropamide를 탄소원(炭素源) 혹은 질소원(窒素源)으로서의 이용여부(利用與否)와 반복처리(反覆處理)에 의한 세균(細菌)의 Napropamide 분해양상(分解樣相)을 조사(調査)하였는 바 그 결과는 다음과 같다. 공시토양(供試土壤)인 식양토(埴壤土)에서 분리(分離)한 세균(細菌)은 그람양성균(陽性菌) 및 그람음성균(陰性園)이 각각(各各) 4속(屬) 10균주(菌株)씩이었고, 이들 세균(細菌)의 Napropamide에 대한 생존력시험(生存力試驗)에서 공시균주(供試菌株) 모두 100ppm에서는 활발(活撥)하게 증식(增植)되었고 1500ppm까지 생존력(生存力)이 뛰어난 균주(菌株)는 Staphylococcus속(屬) 2균주(菌株), Corynebacterium속(屬) III, 기타(其他) 속(屬) II이었다. 공시균주중(供試菌株中) 20%이상(以上) Napropamide 분해능(分解能)을 가진 세균(細菌)은 Staphylococcus속(屬) II와 Actinobacillus속(屬) I이었고, 이들 두 균주(菌株)는 Napropamide를 단일(單一) 질소원(窒素源)으로서는 이용(利用)하지 못하였으나, Staphylococcus속(屬) II가 Napropamide를 단일(單一) 탄소원(炭素源)으로 이용(利用)하는 것으로 나타났다. Napropamide의 반응처리(反覆處理)에 따른 Staphylococcus속(屬) II의 공시약제(供試藥劑)의 분해(分解)는 1회처리(回處理)에서 급속(急速)히 분해(分解)되었고 2회연용처리(回連用處理) 후(後)에는 분해(分解)가 지연(遲延)되었으나 3회연용처리(回連用處理)에서는 다시 급속(急速)한 분해(分解)가 일어났다.

  • PDF

제초제 Flumioxazine의 가수분해 반응성에 관한 분자 궤도론적 이해 (Understand the Molecular Orbital Theory on the Hydrolytic Reactivity of Herbicide Flumioxazine)

  • 성낙도;정훈성
    • 농약과학회지
    • /
    • 제8권4호
    • /
    • pp.265-271
    • /
    • 2004
  • 제초제 flumioxazine의 가수분해 반응성을 분자 궤도(MO)론적으로 검토한 결과, pH 5.0 이하의 산성에서는 $A_{AC}1$형의 반응 메커니즘으로 1,2-dicarboximino group의 carbonyl oxygene 원자$(O_{21})$에 대하여 hydronium ion $(H_3O^+)$에 의한 양성자화$(SH^+)$가 일반 산-촉매반응(general acid catalysis)에 따른 전하조절(charge-control) 반응이 일어난다. pH 8.0이상의 염기성에서는 $B_{AC}2$형의 반응 메커니즘으로 hydroxide anion $(OH^-)$에 의한 특정 염기-촉매반응(specific base catalysis)에 따른 궤도조절(orbital-control) 반응이 일어난다. 그리고 pH $5.0\sim8.0$ 사이에서 두 반응은 경쟁적으로 일어나 친핵성 첨가-제거반응$(Ad_{N-E})$으로 진행된다.

농약의 토양 표면유출에 관한 연구-I 포장에서 자연강우에 의한 Captafol의 유출특성 (Study on Pesticide Runoff from Soil Surface-I, Runoff of Captafol by Natural Rainfall in Field)

  • 김용화;김정한;박창규;김균
    • Applied Biological Chemistry
    • /
    • 제39권6호
    • /
    • pp.488-493
    • /
    • 1996
  • 농약의 토양 표면유출에 관한 연구의 일차단계로 사과 과수원에서 자연강우를 이용한 captafol의 토양 표면 유출 실험을 수행하였다. Captafol 유출농도는 약제를 살포한 직후 강우가 있었던 5차시기에 가장 높은 180 ppb의 수준을 보였으며, 그 이외의 시기에는 대부분 20 ppb 이하였고, 전체 유출된 양은 처리한 유효성분량에 대하여 0.1% 이하 수준이었다. 지천과 합류되는 지점에서 captafol의 희석배율은 과수원의 배출구와 바로 인접한 지천에서는 약 10배, 좀 더 이동되어 큰 지천과 합류되는 지점에서는 약 50배의 수준이었다. 따라서 captafol이 유출로 인하여 인접 하천으로 유입되는 경우는 희석요인(약 $10{\sim}50$배로 희석)과 빠른 가수분해성을 고려할 때 환경생물에 대한 급성적인 독성은 문제가 되지 않을 것으로 판단되었다.

  • PDF

님나무 추출물의 Limonoid계 살충성분 4종의 환경매체 노출 안정성 (Stability of Four Limonoidal Substances of Neem Extract under Controlled Aquatic and Soil Conditions)

  • 김진효;정두연;진초롱;김원일;임성진;최근형;박병준
    • 농약과학회지
    • /
    • 제18권3호
    • /
    • pp.156-160
    • /
    • 2014
  • 본 연구에서는 님 추출물 및 이를 주성분으로 하는 유기농자재의 limonoid계 주요 4성분인 azadirachtin A, azadirachtin B, deacetylsalannin, salannin에 대해 수중 및 토양 노출 안정성을 평가하였다. 님 추출물을 대상으로 한 시험에서 limonoid계 유효성분의 수중 안정성 평가 결과 탈산소 조건에서 반감기는 210일 이상으로 매우 안정적이었으며, 호기조건의 반감기는 86.6일로 관찰되었다. 이러한 현상은 유기농자재 제품에서도 동일하게 나타났으며, 제품의 경우 반감기가 최대 173일로 관찰되어 추출물 원액보다 안정성이 높음을 확인할 수 있었다. 또한, 님 추출물 및 제품을 대상으로 유효성분의 토양노출 안정성을 평가한 결과, 건조토양의 경우 추출물 원액과 유기농자재 제품의 차이가 크지 않았으며, 이때 유효성분의 반감기는 43.3-57.7일로 수중 호기조건 노출보다 분해가 약 2배 가량 빨리 진행됨을 확인하였다. 함수토양의 경우 총 limonoid 반감기는 6.4-12.3일로 본 연구에서 설정한 조건 중 분해 반감기가 가장 짧은 것으로 확인되었다. 또한, 함수토양 내 총 세균수는 6.0 log CFU/g soil 이상에서 유지됨을 확인하였으며, 이러한 결과로 볼 때 함수토양에서의 limonoid 성분 분해는 화학적 산화와 미생물 분해가 동시에 진행되는 것으로 판단되었다.

벼 종자소독 후 prochloraz 폐액의 안전 폐기 방법 (Safe and easy disposal of prochloraz wastewaters after used as rice seed disinfectant)

  • 박병준;최주현;김찬섭;이병무;임양빈;조일규
    • 농약과학회지
    • /
    • 제7권3호
    • /
    • pp.169-175
    • /
    • 2003
  • 물 중 prochloraz 의 잔류특성과 농자재를 이용하여 볍씨 종자소독 후 폐액을 쉽고 안전하게 폐기하는 기술을 확립하고자 실험을 수행하였다. Prochloraz의 물 중 반감기는 $4.0\sim5.0$일 이었고, 가수분해는 알카리 조건에서 빠르게 분해되었으며, 물 중 광분해는 $5530J/cm^2$ 조사시 87.7% 의 분해력을 보여 광분해가 비교적 용이하게 일어남을 알 수 있었다. 종자소독한 볍씨를 물로 세척했을 때 prochloraz 용출율은 처음 l회 세척시 $9.2\sim10.6%$로 최고에 이르렀으며, 세척 횟수가 증가하면 할수록 용출율은 감소하여 4회 부터는 3% 이하로 떨어졌다. 희석액 중 농자재 첨가에 의한 prochloraz의 제거율은 석회 100 g/L 처리시 93.6%로 가장 높았으며, 돈분퇴비 90.7, 활성탄 89.4, 볏짚재 78.0, 사양토 70.3, 제오라이트 47.0, 볏짚 24.1% 순으로 감소하였다. 폐액 중 prochloraz의 분해는 석회 > 볏짚재 > 돈분퇴비 > 사양토 > 볏짚 순 이었다. 또한 유휴지 토양에 희석액을 살포한 후 prochloraz는 처리 35일에 90% 이상이 소실되었다.

살균제 Procymidone의 토양 중 동태 (Behaviors of the Fungicide Procymidone in Soils)

  • 최규일;성기용;김정규
    • 한국환경농학회지
    • /
    • 제24권2호
    • /
    • pp.123-131
    • /
    • 2005
  • 살균제 procymidone의 토양 중 행적에 관한 흡 탈착, 용탈실험과 광분해 및 가수분해 실험을 통한 농업환경 중 동태를 구명코자 하였으며, 그 결과는 다음과 같다. 흡착은 직선식과 Freundlich식에 부합하였고, 분배계수는 $2.75{\sim}12.18$, Kf값은 $1.99{\sim}9.98$로 토양유기물 함량에 비례하였다. 토양별 탈착율은 백산>지곡>남계통의 순서로 높게 나타났다. 자연광 하에서의 광분해는 느려 자연광에 의한 직접적인 분해는 적을 것으로 사료되었으며, 용탈 이동성은 낮아 Macall총설 및 SSLRC 이동성 분류에 따라 low class에 속했고 특히 유기물 함량이 높은 남계통은 2주 경과후에도 농약이 용탈되지 않았다. 가수분해 실험결과 procymidone은 산성 및 중성보다 알칼리 조건에서 가수분해가 빨랐으며, 높은 온도에서 분해가 빨랐다. 이상의 결과 procymidone은 토양환경에서 흡착량이 높고 이동성이 낮아 타 환경계로의 전이 정도는 매우 낮다고 평가되었다.

2-Chloro-N-(Cyano-2-thienyl methyl) acetamide의 열적 위험성 및 분해 특성 (Thermal Hazard and Decomposition Characteristics of 2-Chloro-N-(Cyano-2-thienyl methyl) acetamide)

  • 최이락;서동현;한우섭
    • 한국가스학회지
    • /
    • 제26권5호
    • /
    • pp.41-48
    • /
    • 2022
  • 2-Chloro-N-(Cyano-2-thienyl methyl) acetamide(CCTA)는 농약을 합성하는데 사용하는 중간체로써 상온 및 상압에서는 안정하지만 열축적 시 분해될 수 있다. 본 연구에서는 열중량분석기(TGA) 실험을 통해 온도에 따른 질량 변화 측정으로 분해거동을 확인하고, 시차주사열량계(DSC)를 이용하여 열분해특성을 평가하였다. CCTA는 약 91℃에서 발열 분해반응이 급격하게 발생하였으며, Kissinger method, Kissinger-Akahira- Sunose(KAS) method, Flynn-Wall-Ozawa(FWO) method를 이용한 활성화 에너지 계산 결과, 각각 162 kJ/mol, 140 kJ/mol, 139 kJ/mol 으로 나타났다. 활성화에너지를 이용하여 계산된 24시간 이내 최대발열속도에 도달하는 온도인 TD24는 52~55 ℃로 평가되었다.

기능화된 Zerovalent Iron에 의한 유기인계 살충제 Chlorpyrifos의 분해 특성 (Degradation Patterns of Orgaonophosphorus Insecticide, Chlorpyrifos by Functionalized Zerovalent Iron)

  • 김대현;최충렬;김태화;박만;김장억
    • Applied Biological Chemistry
    • /
    • 제50권4호
    • /
    • pp.321-326
    • /
    • 2007
  • 상업용 ZVI, nanosize ZVI 및 montmorillonite-ZVI complex 등에 의한 유기인계 살충제 chlorpyrifos의 수질 및 토양에서의 분해 특성을 조사하였다. 수용액내에서 ZVIs 처리량이 증가할수록 chlorpyrifos의 분해율 및 반응속도상수$(k_1)$는 증가되었고 cZVI

미생물의 탈염소화 작용에 의한 난분해성 염화방향족 오염물질의 분해 (Biodegradation of Recalcitrant Chlorinated Aromatic Compounds via Microbial Dechlorination)

  • 채종찬;김치경
    • 환경생물
    • /
    • 제17권2호
    • /
    • pp.129-138
    • /
    • 1999
  • 난분해성 유기화합물의 일종인 염화 방향족화합물은 냉각제, 소화제, 페인트, 용매, 플라스틱류, 유압제, 제초제, 농약, 그리고 화학합성에 필요한 전구물질 등에 널리 사용된다. 이들은 친지질 특성을 가지므로 생물체의 세포막에 쉽게 흡착되며 먹이사슬에 의한 생물학적 농축과정을 통해 인간을 포함하는 각종 생물체에 축적된다. 그 결과 생물체의 세포막 구조가 변화되고 기능이 저해될 뿐더러 암과 돌연변이를 유발하고 $\ulcorner$환경호르몬$\lrcorner$으로서 생물체의 내분비계 기능을 교란하는 등 심각한 보건학적 그리고 환경생물학적 문제를 일으키고 있다. 염화 방향족화합물들은 벤젠고리 구조와 벤젠고리에 염소가 치환된 탄소-염소 결합을 공통적으로 가지고 있으며 벤젠고리에 치환된 염소의 수와 같은 수의 염소라도 붙어있는 위치에 따라 난분해 특징이 결정된다. 염화 방향족화합물들의 분해를 위해서는 미생물에 의한 벤젠 구조의 개환과정과 함께 벤젠 고리구조로부터 염소 치환기를 제거하는 탈염소화 과정이 반드시 일어나야만 한다. 호기적 환경에서 미생물에 의한 탈염소화는 분해 초기단계에서 dehalogenase라는 효소에 의해 촉매되는 oxygenolytic, reductive, 그리고 hydrolytic catalysis에 의해 일어나거나, 분해 대사과정 중에 저절로 염소치환기가 떨어져 나가는 경우도 있다. 탈염소화 과정을 거쳐 분해하는 미생물들을 이용한 염화 방향족 오염물질의 생물학적 분해방법은 이미 사용되고 있는 물리ㆍ화학적 방법보다 경제적이며 2차 오염의 부작용 없이 그 오염물질들을 매우 효과적으로 처리할 수 있다. 따라서 탈염소화 기작을 포함한 분해과정의 이해는 생물학적 분해의 기본적인 정보를 제공할 뿐더러 난분해성 환경 오염물질의 분해처리를 위하여 보다 집중적으로 연구해야 할 과제라고 할 것이다.

  • PDF

저항성 및 감수성 벼멸구 체외에서의 카보후란 대사 (In vitro metabolism of carbofuran in resistant and susceptible brown planthoppers, Nilaparvata lugens $St{\aa}l$)

  • 유재기;안용준;정야준부;이시우
    • 농약과학회지
    • /
    • 제2권2호
    • /
    • pp.68-74
    • /
    • 1998
  • 벼멸구의 카보후란에 대한 저항성 기작을 구명하기 위해 실내에서 카보후란으로 30세대 도태하여 얻은 저항성계통($LD_{50};\;20.3{\mu}g/g$)과 약제를 12년 동안 처리하지 않은 벼멸구 감수성 계통($LD_{50};\;0.3{\mu}g/g$)을 완충용액과 마쇄하여, 105,000g에서 2시간 원심분리하여 얻은 상등액(에스테라제층)과 침전물(P450-산화효소층)을 효소액으로 하여 $^{14}C$-카보후란을 반응시켜 계통 간 대사물 량의 차이를 조사한 바 저해제(piperonyl butoxide; 산화효소저해제, diethylmalate; 글루타치온 전이효소 저해제, iprobenfos; 에스테라제 저해제)와 보조인자 (NADPH; P-450 산화효소, 글루타치온; 글루타치온전이효소)에 상관없이 카보후란의 대사물과 그 양이 계통간 차이가 없었다. 이상의 결과로부터 저항성 벼멸구에서 일반적으로 곤충에서 생화학적 저항성 기구로 잘 알려진 가수 분해 효소의 일종인 에스테라제와 p-450 산화효소, 글루타치온 전이효소의 활성 증가가 저항성 발달에 관여하지 않음을 알 수 있었다.

  • PDF