DOI QR코드

DOI QR Code

Behaviors of the Fungicide Procymidone in Soils

살균제 Procymidone의 토양 중 동태

  • Choi, Gyu-Il (National Agricultural Products Quality Management Service, Research & Experiment Institute, NAQS) ;
  • Seong, Ki-Yong (National Agricultural Products Quality Management Service, Research & Experiment Institute, NAQS) ;
  • Kim, Jeong-Gyu (Division of Environmental Sciences and Ecological Engineering, College of Life and Environmental Sciences, Korea University)
  • 최규일 (국립농산물품질관리원 시험연구소 안전성분석과) ;
  • 성기용 (국립농산물품질관리원 시험연구소 안전성분석과) ;
  • 김정규 (고려대학교 생명환경과학대학 환경생태공학부)
  • Published : 2005.06.30

Abstract

This study was focused on adsorption, leaching, photolysis, and hydrolysis of the fungicide procymidone in soils. Adsorption type of procymidone on three different soil were well fitted to Linear and Freundlich isotherm. Distribution coefficients (Kd) were ranged from 2.75 to 12.18 and Freundlich isotherm Kf value $1.99{\sim}9.98$, 1/n value $0.74{\sim}0.89$. Desorption rates were $20.1{\sim}34.0%$ (Namgye), $26.3{\sim}44.6%$ (Jigog) and $31.6{\sim}50.9%$ (Baegsan series) and desorption hysteresis were $0.65{\sim}0.79,\;0.55{\sim}0.73\;and\;0.49{\sim}0.68$. Procymidone seemed to be stable to photolysis in acidic and neutral solutions but hydrolyzed rapidly in alkaline solution. Considering leaching properties procymidone mobility low in soils.

살균제 procymidone의 토양 중 행적에 관한 흡 탈착, 용탈실험과 광분해 및 가수분해 실험을 통한 농업환경 중 동태를 구명코자 하였으며, 그 결과는 다음과 같다. 흡착은 직선식과 Freundlich식에 부합하였고, 분배계수는 $2.75{\sim}12.18$, Kf값은 $1.99{\sim}9.98$로 토양유기물 함량에 비례하였다. 토양별 탈착율은 백산>지곡>남계통의 순서로 높게 나타났다. 자연광 하에서의 광분해는 느려 자연광에 의한 직접적인 분해는 적을 것으로 사료되었으며, 용탈 이동성은 낮아 Macall총설 및 SSLRC 이동성 분류에 따라 low class에 속했고 특히 유기물 함량이 높은 남계통은 2주 경과후에도 농약이 용탈되지 않았다. 가수분해 실험결과 procymidone은 산성 및 중성보다 알칼리 조건에서 가수분해가 빨랐으며, 높은 온도에서 분해가 빨랐다. 이상의 결과 procymidone은 토양환경에서 흡착량이 높고 이동성이 낮아 타 환경계로의 전이 정도는 매우 낮다고 평가되었다.

Keywords

References

  1. National Agriculture Products Quality Management Services (NAQS) The survey plan of agricultural products (2004)
  2. Kim, H. K and Lee, K. S. (2002) Effect of coverings on the growth of ginseng and the persistency of procymidone in growing soil. Kor. J. Environ. Agrie 21(1), 24-30 https://doi.org/10.5338/KJEA.2002.21.1.024
  3. Kim, H. K., Lee, Y. H. and Lee, K. S. (2002) Adsorption and degradation of procymidone in ginseng cultivating soils. Kor. J. Environ. Agric 21(1), 286-290 https://doi.org/10.5338/KJEA.2002.21.4.286
  4. National Institute of Agricultural Science and Technology (RDA) Methods of soil and plant analysis, p. 35-126
  5. US EPA (2004) Sediment and soil adsorption isotherm. 40CFR-CHAPTER I-PART 796
  6. Yang, Y. and Sheng, G. (2003) Pesticide Adsorptivity of aged particulate matter arising from crop residue J. Agrie. Food Chem 51, 5047-5051 https://doi.org/10.1021/jf0345301
  7. Morillo, E., Undabeytia, T., Cabrera, A., Villaverde, Land Maqueda, C. (2004) Effect of soil type on adsorption-desorption, mobility, and activity of the herbicide norflurazon. J. Agrie. Food Chem 52, 884-890 https://doi.org/10.1021/jf035026z
  8. Krutz, L. J., Senseman, S. A., Mcinnes, K. J., Zuberer, D. A. and Tierney, D. P. (2003) Adsorption and desorption of atrazine, desethylatrazine, deisopropylatrazine, and hydroxyatrazine in vegetated filter strip and cultivated soil. J. Agric. Food Chem 51, 7379-7384 https://doi.org/10.1021/jf0348572
  9. Huang, G., Li. Q. and Zhang, X. (2003) : Adsorption and desorption of atrazine by three soils. Bull. Environ. Contam. Toxieol 71, 655-661 https://doi.org/10.1007/s00128-003-0183-1
  10. Hong, M. K., Park, J. W. and Kim, J. E. (2001) Behaviors of chloronicotinyl insecticide acetamiprid in soil, Kor. J. Environ. Agric 20(3), 162-168
  11. US EPA (1996) Fate, transfort and transformation test guidelines, OPPTS 835.5270. Indirect photolysis screening test
  12. Oh, K. S., Oh, B. Y., Park, S. S., Jin, Y. D. and Lee, J. K. (1998) Leaching, soil residue, and volatilization of dicamba from controlled released granular formulations, Kor. J. Pesti. Sic 2(1), 53-58
  13. Helling, C. S. and Dragun, J. (1980) Soil leaching tests for toxic organic chemicals. In Proc. Symp. on Test Protocols for Environmental Fate and Movement of Toxicants p. 43-88. Assoc. of Official Analytical Chemists. Washington, DC
  14. US EPA (2002) Hydrolysis as a function of pH at $25^{\circ}C$. 40CFR 796.3500
  15. OECD (2002) Guidelines for the testing of chemicals. Hydrolysis as a function of pH. OECD guideline 111
  16. Vischetti, C. and Esposito, A. (1999) Degradation and transformation of a potential natural herbicide in three soils. J. Agric. Food Chem 47, 3901-3904 https://doi.org/10.1021/jf981306g
  17. Siebers, J. and Ralf Hanel (2003) Assessment of residue analytical methods for crops, food, feed, and environmental sample:the approach of the European Union, Handbook of Residue Analytical Methods for Agrochemicals, pp. 13-37. John Wiley & Sons Ltd
  18. FDA (2001) Guidance for industry bioanalytical method validation, CEDR
  19. Pusino, A., Liu, W. and Cesse, C. (1994) Adsorption of tridopyr on soil and some of its components. J. Agric. Food Chem 42, 1026-1029 https://doi.org/10.1021/jf00040a036
  20. Si, Y. B., Yue, Y. D., Chen, H. M. and Zhou, D. M. (2003) Photodegradation of bensulfuron-methyl on soil surface. Pest Manag Sci 60, 286-290 https://doi.org/10.1002/ps.803
  21. Graebing, P. and Chib, J. S. (2004) Soil photolysis in a moisture and temperature controlled environment. 2. Insecticides. J. Agric. Food Chem 52, 2606-2614 https://doi.org/10.1021/jf030767l
  22. Kim, C. S. (2002) Mobility of pesticides in soils as affected by adsorption characteristics, Ph. D. Thesis, Seoul Nat Univ
  23. Tomlin, C. D. S (2003) The Pesticide Manual. (13th ed.) British Crop Protection Council, UK
  24. 농촌진흥청 (2005) 농약등록시험담당자 교육교재; 잔류성 시험의 기준과 방법, 농진청고시 제 2003-7호

Cited by

  1. Reduction in Residual Pesticides and Quercetin Yields in Onion Peel Extracts by Washing vol.22, pp.12, 2012, https://doi.org/10.5352/JLS.2012.22.12.1665