• Title/Summary/Keyword: 농약물리성

Search Result 86, Processing Time 0.027 seconds

Quantitative Structure Toxicity Relationships (QSTR) of New Herbicidal N-phenyl-3,4-dimethylphthalide Derivatives (새로운 제초성 N-phenyl-3,4-dimethylphthalimide 유도체의 정량적인 구조와 독성과의 관계 (QSTR))

  • Sung, Nack-Do;Yang, Sook-Young;Kang, Hak-Sik
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 2002
  • Quantitative structure-toxicity relationships (QSTRs) between various physicochemical parameters of substituents in new herbicidal N-phenyl-3,4-dimethylphthalimide derivatives and their discriminate score (DS) for chronic and acute toxicities against mouse and rat evaluated using TOPKAT calculation were discussed quantitatively. From the basis on the findings, it was shown that carcinogenicities of female was higher than that of male and mouse had higher tendency than rat. The STR analyses results of Hansch-Fujita type equations suggested that mouse (female & male) and rat male except rat female are dependent on LUMO energy commonly in carcinogenicity. The selective carcinogenicity factor of two species between male mouse and female mouse is dependent on optimal value (ca. $(L)_{opt.}=5.0{\AA}$) for length of $R_2$-substituent mainly. According to Free-Wilson approach, in the case of rat male, alkyl and aryl substituents were superior and in the other case, contribution of fluoro group substituents were superior to chronic toxicity.

Residual Toxicity of Bifenthrin and Imidacloprid to Honeybee by Foliage Treatment (Bifenthrin과 Imidacloprid의 작물잎에서의 잔류량과 꿀벌에 대한 독성)

  • Cho, Kyung-Won;Park, Hyun-Ju;Bae, Chul-Han;Kim, Yeon-Sik;Shin, Dong-Chan;Lee, Seung-Yeol;Lee, Suk-Hee;Jung, Chang-Kook;Park, Yeon-Ki;Kim, Byung-Seok;Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.3
    • /
    • pp.226-234
    • /
    • 2010
  • Foliage residue toxicity experiment was performed against honeybee (Apis mellifera) with bifenthrin, a synthetic pyrethroid insecticide with strong acute contact toxicity and imidacloprid, a neo-nicotinoid insecticide with strong acute oral toxicity to know the honeybee toxicity at the residue level on the leaves of alfalfa and apple. Also, the formulation differences to honeybee toxicity were investigated with WP (2%) and EC (1%) of bifenthrin and WP (10%) and SL (4%) of imidacloprid. Generally, foliage residual toxicity of honeybee and residual amounts of tested insecticides was higher in alfalfa leaves with large leaf area per unit weight than in apple leaves. While on the other hand, the only bifenthrin WP treatment showed higher honeybee toxicity on apple leaves than alfalfa. Although imidacloprid showed higher residue amounts ranged $4.9{\sim}25.4\;mg{\cdot}kg^{-1}$ than bifenthrin ranged $0.6{\sim}12.7\;mg{\cdot}kg^{-1}$ on the leaves, the residual toxicity to honeybee was lower than bifenthrin because of its strong penetration character. In conclusion, the residual toxicity of insecticide to honeybee could be affected by the contact and vaporized toxicity of chemical, the residual amounts on the surface of leaves, and the leaf area per unit weight and formulation differences.

Herbicidal Effect of 5-Aminolevulinic Acid, a Biodegradable Photodynamic Substance (생분해성 광활성 물질 5-aminolevulinic acid의 제초활성)

  • Chon, Sang-Uk;Kim, Young-Min
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.1
    • /
    • pp.38-45
    • /
    • 2007
  • Laboratory and greenhouse experiments were conducted to determine the herbicidal effect of two types of ${\delta}$-aminolevulinic acid (ALA), microbiologically-produced ALA (Bio-ALA) and synthetically produced ALA (Synthetic-ALA), on plant growth and chlorophyll content of Chinese cabbage. ALA effect on early plant growth was greatly concentration dependant, showing significant inhibition at higher concentrations. Both pre- and post-emergence application of ALA exhibited significant degree of photodynamic phytotoxicity. Older plants with many leaves were more tolerant to ALA than younger plants, showing less injury. No significant difference in herbicidal activity of two types of ALA, Bio-ALA and Synthetic-ALA, on plant height and chlorophyll content of Chinese cabbage was observed. However, residual biological activity and physico-chemical properties of Synthetic-ALA were more stable than those of Bio-ALA. Our results suggest that ALA had herbicidal potential with both pre- and post-emergence application, and that the chemical may be a valuable mean of eco-friendly weed control based on natural microbial substance.

Reduction in Residual Pesticides and Quercetin Yields in Onion Peel Extracts by Washing (세척방법에 따른 양파껍질추출물의 Quercetin수율 및 잔류농약 제거효과)

  • Jeong, Eun-Jeong;Cha, Yong-Jun
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1665-1671
    • /
    • 2012
  • This study was conducted to assess the removal of residual pesticides and to obtain high amounts of quercetin in onion peel extracts (OPEs) by 4 washing treatments. Washing is one of the standard processing steps in obtaining functional food ingredients from onion peel. After a first detergent wash (0.2% w/v) (DW) and hot air drying ($80^{\circ}C$, 24 hr) (B), 4 washing treatments were tested, including a second DW (C), ultrasonication ($50^{\circ}C$, 10 min) plus DW (D), 0.3% $H_2O_2$ (v/v) plus DW (E), and blanching ($95-97^{\circ}C$, 2 min) plus DW (F). This was followed by 60% (v/v) ethanol extraction and vacuum freeze drying of the OPE. The E treatment yielded 89.04% OPE and a quercetin content of 96.84% in the OPE compared with the B treatment, and had the highest efficiency of all treatments tested. The OPE was tested for the presence of 177 residual pesticides and three compounds were detected in all treatments: cyhalothirn, fluquinconazole and procymidone. Cyhalothirn and fluquinconazole levels were below the permitted levels for fresh onion, while procymidone was present in the high level range of 128.01~133.46 mg/kg in all samples. The E treatment was a better washing method than the others for removal of residual pesticides. It could reduce the level of residual pesticides without changing the functional properties of the OPE.

Study on Physicochemical Properties of Pesticide. (I) Water Solubility, Hydrolysis, Vapor Pressure, and n-Octanol/water Partition Coefficient of Captafol (농약의 물리화학적 특성연구 (I) Captafol의 수용성, 가수분해, 증기압, 옥탄올/물 분배계수)

  • Kim, Jeong-Han;Lee, Sung-Kyu;Kim, Yong-Hwa;Kim, Kyun
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.71-75
    • /
    • 1997
  • Important physicochemical properties of captafol [N-(1,1,2,2-tetrachloro-ethylthio)cyclohex-4-ene-1,2-dicarboximide], water solubility, vapor pressure, hydrolysis and octanol/water partition coefficient(Kow) were measured based on the standard EPA and OECD methods. Water solubility of the chemical was 2.24 ppm at $25^{\circ}C$. Half-life by hydrolysis at $25^{\circ}C$ in the buffer solution of pH 3.0, pH 7.0, and pH 8.0 was 77.8 hr, 6.54 hr and 0.72 hr, respectively, demonstrating instability in alkaline solution. The half-life in acid condition was not significantly different by temperature change, however, that in neutral or alkaline solution became shorter at $40^{\circ}C$. Hydrolysis study with a reference compound, diazinon, proved that the experimental method of the present study is reliable. Vapor pressure of captafol, $8.27{\times}10^{-9}$ torr at $20^{\circ}C$, was calculated from the equation, log P=6.94-(4401.6/T) plotted on the experiment results under different temperature conditions, 40, 50, and $60^{\circ}C$. pressure of captafol, the contamination of captafol would not happen easily in environment by vaporization. High Kow value of 1,523 was observed and this might result in bioconcentration through food chain when captafol was exposed. However, affecting human health through aquatic bioaccumulation is not likely to occur due to its rapid hydrolysis in the environment.

  • PDF

Volatilization of Sprayed Pesticides in Greenhouse using a Lysimeter (라이시미터를 이용한 시설하우스 내에 살포한 농약의 휘산 양상)

  • Kim, Danbi;Kim, Taek-Kyum;Kwon, HyeYong;Hong, Su-Myeong;Park, Byung-Jun;Lim, Sung-Jin;Lee, Hyo-Sub;Moon, Byeong-Cheol
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • In cultivation environment, various pesticides are used and some of them could be volatilized into the air. This could affect farmer's health and also cause environmental pollution. This study was carried out to investigate the volatilization of pesticides, and use the reference data for preventing farmer's pesticide intoxication and securing worker safety. The experiment was conducted in a greenhouse using a lysimeter which was of $1m^2$ area and 1.5 m depth filled with upland soil. The pesticides treated in lysimeter soil were ethoprophos (5.0% GR), diazinon (34.0% EC), alachlor (43.7% EC), metolachlor (40.0% EC), chlorpyrifos (2.0% GR), pendimethalin (31.7% EC), carbaryl (50.0% WP), napropamide (50% WP), tebuconazole (25.0% WP) and imidacloprid (2.0% GR). Each pesticide was treated at a concentration of 770.5 mg based on A.I (%). The recovery of pesticide ranged from 77.4 to 99.3%. The volatilized pesticides in air were collected by personal air sampler with PUF tube at 4 l/min flow rate. In addition, temperature and humidity were measured. The collected samples were extracted using acetone in a soxhlet apparatus for 8 hours. The extracted pesticides were resoluted with acetonitrile and diluted 5 times. It was analyzed with LC-MS/MS. For 720 hours experiment, the largest vaporization amount of each pesticide in air was ethoprophos $15.24{\mu}g/m^3$, diazinon $5.14{\mu}g/m^3$, pendimethalin $2.70{\mu}g/m^3$, chlorpyrifos $1.76{\mu}g/m^3$, alachlor $1.40{\mu}g/m^3$, metolachlor $1.12{\mu}g/m^3$, carbaryl $0.27{\mu}g/m^3$, napropamide $0.22{\mu}g/m^3$, tebuconazole $0.11{\mu}g/m^3$ and imidacloprid $0.05{\mu}g/m^3$. The R value (coefficient of correlation) between volatilization and vapor pressure of pesticides is higher than 0.99. Therefore, there is high correlation between volatilization and vapor pressure of pesticides.

Equipment and Materials for Food Sanitation (식품의 안전성 검사기기)

  • 양재승
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.3
    • /
    • pp.414-421
    • /
    • 1997
  • HACCP procedures are regarded as essential components of modern safety assurance programs for all forms of food processing and preservation, including irradiation. Control of hazards and classification of hazardous microorganisms and indicator organisms (and related tests) are helpful to establish preventive and practice regulations at each facility. A carefully conceived and well implemented system assure the safety of all products. The HACCP is designed to prevent defects, rather than to detect them as in traditional end-point testing and inspection, as controlling requirements into food formulations, processing parameters and operating practices. This article commentes on some equipments and materials for HACCP system.

  • PDF

320 Pesticides Analysis of Essential Oils by LC-MS/MS and GC-MS/MS (LC-MS/MS 와 GC-MS/MS 를 이용한 에센셜 오일 중 320 종 잔류농약 분석법 개발)

  • Oh, Ka Hyang;Park, Sung Mak;Lee, So Min;Jung, So Young;Kwak, Byeong-Mun;Lee, Mi-Gi;Lee, Mi Ae;Choi, Sung Min;Bin, Bum-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.317-331
    • /
    • 2021
  • Essential oil is a volatile substance obtained by physically obtaining fragrant plant materials made by one single plant and plant species, and is widely used for cosmetics, fragrances, and aroma therapy due to its excellent preservation, sterilization, and antibacterial effects. When essential oil would undergo the extraction and concentration processes, the agricultural chemicals thereof would be extracted and concentrated only to be harmful to the human body. This study analyzes 320 residual agricultural chemicals concentrated in the essential oil, and to this end, LC-MS/MS and GC-MS/MS are used, while the freezing process is applied instead of the conventional refining process hexane, to improve the preprocessing method. As a result of analyzing the essential oil, such ingredients as chlorpyrifos, piperonyl butoxide and silafluofen have been detected in Basil oil and Clove leaf oil. Hence, it is perceived that the residual agricultural chemicals should continue to be monitored for the essential oil.

Establishment of Analytical Method for Pymetrozine Residues in Crops Using Liquid-Liquid Extraction(LLE) (액-액 분배법을 활용한 작물 중 pymetrozine의 잔류분석법 확립)

  • Yoon, Ji-Young;Moon, Hye-Ree;Park, Jae-Hun;Han, Ye-Hoon;Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • Polar pesticides like pymetrozine (log $P_{ow}$: -0.18) are known to be difficult to analyze. The analytical method of pymetrozine using hydromatrix included in the official method of KFDA was uncommon and provided ambiguous evidence to confirm both the identity and the quantity. Therefore, precise single residue analytical method was developed in representative crops for using liquid-liquid extraction (LLE). The pymetrozine residue was extracted with methanol from 11 representative crops which comprised apple, blueberry, broccoli, cabbage, cherry, crown daisy, hulled rice, Korean cabbage, potato, rice and watermelon. The extract was purified serially by liquid-liquid extraction (LLE) and silica solid phase extraction (SPE). For rice and hulled rice samples, n-hexane partition was additionally adopted to remove nonpolar interferences, mainly lipids. The residue levels were analyzed by HPLC with DAD, using $C_8$ column. LOQ (limit of quantitation) of pymetroizinie was 1 ng (S/N > 10) and MQL (method quantitation limit) was 0.01 mg/kg. Mean recoveries from 11 crop samples fortified at three levels (MQL, 10 ${\times}$ MQL and 50 ${\times}$ MQL) in triplicate were in the range of 83.1~98.5% with coefficients of variation (CV) of less than 10%, regardless of sample type, which satisfies the criteria of KFDA. The method established in this study could be applied to most of crops as an official and general method for analysis of pymetrozine residue.

Environmental Fate of Trichlorfon Used to Control Agelastica coerulea B. in Forest by Aerial Application (오리나무 잎벌레(Agelastica coerulea B.) 방제용 살충제 Trichlorfon(Dipterex)의 환경 동태)

  • Lee, Sung-Kyu;Kim, Yong-Hwa;Roh, Jung-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.2
    • /
    • pp.119-129
    • /
    • 1986
  • Disappearence of the trichlorfon (Dipterex) in the forest, following aerial to control Agelastica coerulea B., were studied by sampling deposits on slide glasses, soils, water, and leaves, and analysing with a gas chromatograph equipped with an electron capture detector. By analysing the amount remained on slide glasses, it was shown that the pesticide was adequately sprayed and nearly all deposit was lost in a day. The amount deposited under the tree was about 1/100 of the amount at an exposed site. Concentration of trichlorfon in creek water was 10 to 100 times as high as the acute toxic level to zooplankton for 6 to 24 hours, The rain could recontaminate the stream water up to the toxic level. Loss rate of trichlorfon from soils showed variations by sampling sites and was generally slower than from slide glasses. Amount deposited on leaves were less than the calculated or expected amount. The loss from leaves were similar to that from soil.

  • PDF