Herbicidal Effect of 5-Aminolevulinic Acid, a Biodegradable Photodynamic Substance

생분해성 광활성 물질 5-aminolevulinic acid의 제초활성

  • Chon, Sang-Uk (Callus Co. Ltd., TBI Center, Gwangju Institute of Science and Technology) ;
  • Kim, Young-Min (Donguinara Co. Ltd., Biotechnology Industrialization Center, Dongshin University)
  • 천상욱 (광주과학기술원 창업기술지원센터 (주)캐러스) ;
  • 김영민 (동신대학교 생물자원산업화지원센터 (주)동의나라)
  • Published : 2007.03.30

Abstract

Laboratory and greenhouse experiments were conducted to determine the herbicidal effect of two types of ${\delta}$-aminolevulinic acid (ALA), microbiologically-produced ALA (Bio-ALA) and synthetically produced ALA (Synthetic-ALA), on plant growth and chlorophyll content of Chinese cabbage. ALA effect on early plant growth was greatly concentration dependant, showing significant inhibition at higher concentrations. Both pre- and post-emergence application of ALA exhibited significant degree of photodynamic phytotoxicity. Older plants with many leaves were more tolerant to ALA than younger plants, showing less injury. No significant difference in herbicidal activity of two types of ALA, Bio-ALA and Synthetic-ALA, on plant height and chlorophyll content of Chinese cabbage was observed. However, residual biological activity and physico-chemical properties of Synthetic-ALA were more stable than those of Bio-ALA. Our results suggest that ALA had herbicidal potential with both pre- and post-emergence application, and that the chemical may be a valuable mean of eco-friendly weed control based on natural microbial substance.

미생물학적으로 생산된 것과 합성된 2종류의 ${\delta}$-aminolevulinic acid(ALA)가 배추의 생장과 엽록소 함량에 미치는 제초활성을 탐색하기 위해 실험실 및 온실시험을 수행하였다. 초기 유묘의 생장에 미치는 ALA의 효과는 농도에 비례하여 반응을 보이며 높은 농도에서 유의적인 억제효과를 보였다. 발생 전 및 발생 후 처리된 ALA는 유의적인 정도의 광활성을 나타냈다. 많은 잎을 가진 엽령의 유묘는 적은 엽령의 유묘보다 ALA에 대해 더 내성을 보였다. 미생물학적으로 생산된 것과 합성된 ALA간의 제초효과에 있어서 유의적인 차이는 인정되지 않았다 그러나 합성된 ALA의 잔류성과 물리화학적 특성은 미생물학적으로 생산된 ALA의 그것 보다 더 안정적이었다. 따라서 잡초발생 전후 처리한 ALA의 제초활성이 인정되었으며 그 화합물은 천연 미생물 제제로 가치 있는 친환경 잡초방제 수단이 될 것으로 사료되었다.

Keywords

References

  1. Askira, Y., B. Rubin and H. D. Rabinowitch (1991) Differential response to the herbicidal activity of $\delta$-aminolevulinic acid in plants with high and low SOD activity. Free Rad. Res. Comms. 12-13:837 -843
  2. Avissar, Y. J., J. G. Ormerod and S. I. Beale (1989) Distribution of 5-aminolevulinic acid acid biosynthetic pathways among phototrophic bacterial groups. Arch. Microbiol. 151:513 -519 https://doi.org/10.1007/BF00454867
  3. Beale, S. I. (1978) $\delta$-aminolevulinic acid in plants: its biosynthesis, regulation, and role in plastid development. Ann. Rev. Plant Physiol. 29:95 -120 https://doi.org/10.1146/annurev.pp.29.060178.000523
  4. Beale, S. I. and J. D. Weinstein (1990) Tetrapyrrole metabolism in photosynthetic organisms. In Biosynthesis of Heme and Chlorophylls (Ed.), Dailey, H. A. pp.287 - 391. McGraw-hill, New York
  5. Beale, S. I. and P. A. Castelfranco (1974) The biosynthesis of $\delta$-aminolevulinic acid in higher plants. II. Formation of $^{14}C-\delta$-aminolevulinic acid from labeled precursors in greening plant tissues. Plant Physiol. 53:297 -303 https://doi.org/10.1104/pp.53.2.297
  6. Boger, P. and K. Wakabayashi (1999) Peroxidizing herbicides. Springer, Berlin, Heidelberg
  7. Choi, C., B. S. Hong, H. C. Sung, H. S. Lee and J. H. Kim (1999) Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene for Bradyrhizobium japonicum. Biotech. Letters. 21:551-554 https://doi.org/10.1023/A:1005520007230
  8. Chon S. U. (2003) Herbicidal activity of &aminolevulinic acid on several plants as affected by application methods. Korean J. Crop Sci. 48:50-55
  9. Duke, S. O., J. Lydon, J. M. Becerril, T. D. Sherman, L. P. Lehnen and H. Matsumoto (1991) Protoporphy-rinogen oxidase-inhibiting herbicides. Weed Sci. 39:465 -473
  10. Hopf, F. R. and D. G. Whitten (1978) Chemical transformations involving photoexcited porphyrins and metalloporphyrins. In D. Dolphin (Ed.), The Porphyrins. Vol. 2. Academic Press. NY. 1978. pp.191-195
  11. Hotta, Y., T. Tanaka, H. Takaoka, Y. Takeuchi and M. Konnai (1997) Promotive effect of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regulation 22:109-114 https://doi.org/10.1023/A:1005883930727
  12. Hotta, Y. and K. Watanabe (1999) Plant growthregulating activities of 5-aminolevulinic acid, Syo kubutu-no-Kagaku-Tyousetu (Chem. Regul. Plants). 34:85-96
  13. Kuk, Y. I., G. S. Lim, S. U. Chon, T. E. Hwang and J. O. Guh (2003) Effect of 5-aminolevulinic acid on growth and Inhibition of various plant species. Kor. J. Crop Sci. 48:127-133
  14. Kuramochi, H., M. Konnai, T. Tanaka and Y. Horta. (1997) Method for improving plant salt tolerance. US patent 5661111
  15. Lermontova, I. and B. Grimm (2000) Overexpression of plastic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol. 122:75 -83 https://doi.org/10.1104/pp.122.1.75
  16. Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148:350-382 https://doi.org/10.1016/0076-6879(87)48036-1
  17. Menon, I. A., S. D. Persad and H. F. Haberman (1989) A comparison of the phytotoxicity of protoporphyrin, coproporphyrin, and uroporphyrin using a cellular system in vitro. Clin. Biochem. 22:197-200 https://doi.org/10.1016/S0009-9120(89)80077-3
  18. Mock, H. P., U. Keetman and B. Grimm (2002) Photosensitising tetrapyrroles induce antioxidative and pathogen defense responses in plants. pp.155 -170. In Oxidative Stress in Plants, (eds. Inze, D. and M van Montagu), Taylor and Francis, London, NY
  19. Papenbrock, J. and B. Grimm (2001) Regulatory network of tetrapyrrole biosynthesis - studies of intracellular signaling involvedin metabolicand developmental control of plastids. Planta 213:667-681 https://doi.org/10.1007/s004250100593
  20. Rebeiz, C. A., A. Montazer-Zouhoor, H. J. Jopen and S. M Wu. (1984) Photodynamic herbicides: Concept and phenomenology. Enzyme Microb. Technol. 6:390-401 https://doi.org/10.1016/0141-0229(84)90012-7
  21. Rebeiz, C. A., A. Motazer-Zouhoor, J. M Mayasich, B. C. Tripathy, S. M. Wu and C. C. Bebiz (1988a) Photodynamic herbicides. Recent developments and molecular basis of selectivity. Crit. Rev. Plant Sci. 6:385-486 https://doi.org/10.1080/07352688809382256
  22. Rebeiz, C. A., J. A. Juvik, and C. C. Rebeiz (1988b) Photodynamic insecticides I. Concept and phenomenology. Pesticide Biochem. Physiol. 30:11-27 https://doi.org/10.1016/0048-3575(88)90055-7
  23. Rebeiz, C. A., K. N. Reddy and U. B. Nandilhalli (1990) Tetrapyrrole-dependent photodynamic herbicide. Photochem. Photobiol. 52: 1099 -1117 https://doi.org/10.1111/j.1751-1097.1990.tb08451.x
  24. Rebeiz, C. A., S. M. Wu, and M. Kuhadje, H. Daniel and E.J. Perkins (1983) Chlorophyll a biosynthetic routes and chlorophyll a chemical heterogeneity. Mol. Cell. Biochem. 58:97 -125
  25. Sasaki, K., S. Ikeda, Y. Nishizawa and M. Hayashi. (1987) Production of $\delta$-aminolevulinic acid from photosynthetic bacteria. J. Ferment. Technol. 65:511-515 https://doi.org/10.1016/0385-6380(87)90109-9
  26. Sasaki, K., T. Tanaka and S. Nagai (1998) Use of photosynthetic bacteria for the production of SCP and chemicals. pp.247 -291. In Bioconversion of Waste Materials to Industrial Products, 2nd ed., (ed. Martin, A. M), Blackie Academic and Professional
  27. Scalla, R. and M. Matringe (1994) Inhibitors of protoporphyrinogen oxidase as herbicides: Diphenyl ethers and related photobleaching molecules. Rev. Weed Sci. 6: 103 -132
  28. Schuimaker, J. J., P. Baas, L. M. van Leengoed, F.W. van der Meulen, W. M Star and N. van Zandwijk (1999) Photodynamic therapy: a promising new modality for treatment of cancer. J. Photochem. Photobiol. 34:3 -12
  29. Tripathy, B. C. and N. Chakraborty (1991) 5-aminolevulinic acid induced photodynamic damage of the photosynthetic electron transport chain of cucumber (Cucumis sativus L.) cotyledons. Plant Physiol. 96:761 -767 https://doi.org/10.1104/pp.96.3.761
  30. Weinstein, J. D. and S. I. Beale (1983) Separate physiological roles and sub-cellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J. Biol. Chem. 258:6799-6807
  31. Wettstein, D. v., S. Gough and C. G. Kannangara (1995) Chlorophyll biosynthesis. Plant Cell 7:1039-1057 https://doi.org/10.1105/tpc.7.7.1039