문서 요약은 주어진 문서에서 핵심 내용만을 남긴 간결한 요약문을 생성하는 일로 자연어처리의 주요 분야 중 하나이다. 최근 방대한 데이터로부터 심층 신경망 표상을 학습하는 기술의 발전으로 문서 요약 기술이 급진적으로 진화했다. 이러한 데이터 기반 접근 방식에는 모델의 학습을 위한 양질의 데이터가 필요하다. 그러나 한국어와 같이 잘 알려지지 않은 언어에 대해서는 데이터의 획득이 쉽지 않고, 이를 구축하는 것은 많은 시간과 비용을 필요로 한다. 본 논문에서는 한국어 문서 요약을 위한 대용량 데이터셋을 소개한다. 데이터셋은 206,822개의 기사-요약 쌍으로 구성되며, 요약은 표제 형식의 여러 문장으로 되어 있다. 우리는 구축한 학습 데이터의 적합성을 검증하기 위해 수동 평가 및 여러 주요 속성에 대해 분석하고, 기존 여러 문서 요약 시스템에 학습 및 평가하여 향후 문서 요약 벤치마크 데이터셋으로써 기준선을 제시한다. 데이터셋은 https://github.com/hong8e/KHS.git의 스크립트를 통해 내려받을 수 있다.
문서 자동 요약은 입력된 문서에 대해 컴퓨터가 자동으로 요약을 생성하는 과정을 의미한다. 즉, 컴퓨터가 문서의 기본적인 내용을 유지하면서 문서의 복잡도 즉 문서의 길이를 줄이는 작업이다. 효율적인 정보 접근을 제공함과 동시에 정보 과적재를 해결하기 위한 하나의 방법으로 문서 자동요약에 관한 연구가 활발히 진행되고 있다. 본 논문의 목적은 어휘 연관성 정보를 이용하여 한국어 문서를 자동으로 요약하는 효율적이며 효과적인 모형을 개발하는 것이다. 제안한 방법에서는 신문기사와 같은 특정 부류에 국한되는 단어간의 어휘연관성을 이용하여 명사-명사 공기패턴과 명사-동사 공기패턴을 구축하여 문서요약에 이용한다. 크게 불용어 처리 단계, 공기패턴 구축 단계, 문장 중요도 계산 단계, 요약 생성단계의 네 단계로 나누어 요약을 생성한다. 30% 중요문장 추출된 신문기사를 대상으로 평가한 결과 명사-명사 공기패턴과 빈도만을 이용한 방법보다 명사-동사 공기패턴을 이용한 방법이 좋은 결과를 가져 왔다.
논 본문은 문서의 주요 내용을 나타내는 문장을 추출함으로써 요약문을 작성하는 자동 요약 기법에 대해 기술하고 있다. 개발한 시스템은 문서 집합으로부터 추출한 어휘적, 통계적 정보를 고려하여 요약 문장을 작성하는 모델이다. 시스템은 크게 두 부분, 학습과정과 요약과정으로 구성이 된다. 학습 과정은 수동으로 작성한 요약문장으로부터 다양한 통계적인 정보를 추출하는 단계이며, 요약 과정은 학습 과정에서 추출한 정보를 이용하여 각 문장이 요약문장에 포함될 가능성을 계산하는 과정이다. 본 연구는 크게 세 가지 의의를 갖는다. 첫째, 개발된 시스템은 각 문장을 텍스트 구성 요소의 하나로 분류하는 텍스트 구성 요소 판별 모델을 사용한다. 이 과정을 통해 요약 문장에 포함될 가능성이 없는 문장을 미리 제거하는 효과를 얻게 된다. 둘째, 개발한 시스템이 영어 기반의 시스템을 발전시킨 것이지만, 각각의 자질을 독립적으로 요약에 적용시켰으며, Dempster-Shafer 규칙을 사용해서 다양한 자질의 확률 값을 혼합함으로써 문장이 요약문에 포함될 최종 확률을 계산하게 된다. 셋째, 기존의 시스템에서 사용하지 않은 새로운 자질 (feature)을 사용하였으며, 실험을 통하여 각각의 자질이 요약 시스템의 성능에 미치는 효과를 알아보았다.
문서 요약을 위한 학습 데이터는 문서와 그 요약으로 구성된다. 기존의 문서 요약 데이터는 사람이 수동으로 요약을 작성하였기 때문에 대량의 데이터 확보가 어려웠다. 그렇기 때문에 온라인으로 쉽게 수집 가능하며 문서의 품질이 우수한 인터넷 신문기사가 문서 요약 연구에 많이 활용되어 왔다. 본 연구에서는 언론사가 소셜 미디어에 게시한 설명글과 제목, 부제를 본문의 요약으로 사용하여 한국어 문서 요약 데이터를 구성하는 것을 제안한다. 약 425,000개의 신문기사와 그 요약데이터를 구축할 수 있었다. 구성한 데이터의 유용성을 보이기 위해 추출 요약 시스템을 구현하였다. 본 연구에서 구축한 데이터로 학습한 교사 학습 모델과 비교사 학습 모델의 성능을 비교하였다. 실험 결과 제안한 데이터로 학습한 모델이 비교사 학습 알고리즘에 비해 더 높은 ROUGE 점수를 보였다.
최근에 스마트폰과 같은 소형 이동 단말기의 보급이 확산됨에 따라 이동 단말을 통한 인터넷 웹 접속이 크게 증가하고 있다. 하지만 이동 단말의 작은 화면은 한 번에 웹페이지의 전체 내용을 브라우징 하기에는 어려움이 있다. 본 논문에서 이러한 이동단말의 문제점을 해결하기 위한 웹 기반 텍스트 요약 시스템을 설계 및 구현하였다. 제안된 텍스트 요약 시스템의 특징은 문서의 구문적 특징을 크게 변화시키지 않고 다량의 텍스트가 단락 안에 존재하는 경우에 문서를 요약하여 텍스트 용량을 줄임으로써 웹 브라우징에 있어 데이터 전송량을 줄이고 빠른 접근과 불필요한 데이터의 출력을 최소화할 수 있다. 제안된 시스템의 특징을 구현을 통하여 확인하였다.
본 논문에서는 copy mechanism과 input feeding 추가한 RNN search 모델을 end-to-end 방식으로 한국어 문서요약에 적용하였다. 또한 시스템의 입출력으로 사용하는 데이터를 음절단위, 형태소단위, hybrid 단위의 토큰화 형식으로 처리하여 수행한 각각의 성능을 구하여, 모델과 토큰화 형식에 따른 문서요약 성능을 비교한다. 인터넷 신문기사를 수집하여 구축한 한국어 문서요약 데이터 셋(train set 30291 문서, development set 3786 문서, test set 3705문서)으로 실험한 결과, 형태소 단위로 토큰화 하였을 때 우수한 성능을 확인하였으며, GRU search에 input feeding과 copy mechanism을 추가한 모델이 ROUGE-1 35.92, ROUGE-2 15.37, ROUGE-L 29.45로 가장 높은 성능을 보였다.
본 논문에서는 광범위한 지역을 감시하기 위해 설치된 여러 대의 카메라로부터 획득된 비디오에 대해 행동을 기반으로 한 비디오 요약 시스템을 제안한다. 제안된 시스템은 시야가 겹쳐지지 않은 다수의 CCTV 카메라를 통해서 촬영한 비디오들을 30분 단위로 나누어 비디오 데이터베이스를 구축하여 시간별, 카메라별 비디오 검색이 가능하다. 또한 30분 단위로 나눈 비디오에서 키프레임을 추출하여 카메라별, 행동별로 비디오를 요약할 수 있도록 하였다. 행동 검출과 관련된 11가지(in, out, stay, left, right, forward, backward, left_forward, left_backward, right_forward, right_backward)에 대한 요약된 정보를 가지고 현재 사람의 행동이 어떤 영역에서 어떤 방향으로 움직이고 있는 지에 대한 정보를 행동별 비디오 요약을 통해 보여줌으로써 더 자세히 행동 추적된 결과를 볼 수 있다. 또한 카메라 3대에 대한 전체적인 키프레임에 대한 행동별 통계를 통해서 감시지역의 행동기반 이벤트들을 한 눈에 간단히 확인해 볼 수 있다.
본 논문은 의미특징과 워드넷 기반의 의사연관피드백을 이용하여 사용자의 질의에 관련 있는 의미 있는 문장을 추출하여 문서요약을 하는 새로운 방법을 제안한다. 제안된 방법은 비음수 행렬 분해로부터 유도된 의미특정이 문서의 잠재의미를 잘 나타나기 때문에 문서요약의 질을 향상할 수 있다. 또한 의미특정과 워드넷기반의 의사연관피드백을 이용하여서 사용자의 요구사항과 제안방법의 요약결과 사이의 의미적 차이를 감소시킨다. 실험결과 제안방법이 유사도, 비음수행렬분해를 이용한 방법들에 비하여 좋은 성능을 보인다.
정보 검색의 결과로 나타나는 요약문을 스니펫(snippet)이라 한다. 사용자는 자신이 원하는 정보를 얻기 위해 문서를 검색하는데, 이 때 스니펫은 사용자가 원하는 문서를 찾는데 중요한 역할을 한다. 본 논문에서는 정보검색 분야에서 높은 성능을 보이는 유사 적합성 피드백을 자동 문서 요약에 맞게 적용하여 높은 성능의 스니펫 생성 시스템을 구현한다. 우선, 사용자의 질의가 포함된 문장들을 일차적으로 요약 문장 후보로 추출한다. 그리고 추출된 문장 후보로부터 명사들을 질의 후보로 고려한다. 각 문장이 질의의 포함 여부에 따라 문장의 적합성을 판단하게 되고, 유사 적합성 피드백 확률 모델에 적용한 후 질의 후보들의 가중치를 추정하여 가중치 순위를 통해 확장할 질의들을 결정한다. 확장된 질의들과 기존의 질의들의 가중치를 합산하여 각 문장의 순위를 매기게 되고 가장 높은 순위의 문장들이 스니펫으로 제시된다. 논문에서 제안한 기법은 추가적인 핵심 질의들을 자동으로 확장하여 중요한 문장을 추출할 수 있다. 이 연구를 위해서 일반 상용 정보 검색 서비스에서 제공하는 스니펫을 수집하였고 이들의 정확도와 시스템의 정확도를 비교하였다. 실험 결과를 통해 살펴본 제안된 시스템의 성능은 상용 정보 검색기에서 제공되고 잇는 스니펫의 정확도 보다 우수한 성능을 보였다.
최근 SNS나 포털을 중심으로 다양한 분야 대해 대중들의 의견이 표현될 수 있는 환경이 확대되고 있고, 이로 인해 오피니언 문서들은 빠르게 대량화 되고 있다. 이러한 환경에서 대용량의 오피니언 문서들의 내용을 파악하기 위해서는 자동 요약 기술의 적용이 필수적이다. 하지만 오피니언 문서 내에는 대상 객체가 갖는 특성들과 주관적 표현들이 내재되어 있어 일반적인 요약 기법으로는 효율적인 요약이 불가능하다. 본 논문에서는 대용량의 오피니언 문서를 대상으로 주요 문장들을 추출하여 요약하는 기법을 제안한다. 제안된 기법에서는 사전에 정의된 오피니언 문서의 특성들에 대해서, 특성들에 대한 오피니언이 표현된 대표적인 문장들이 추출되도록 설계되었다. 또한 실험을 통하여 제안된 방법의 유용성을 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.