• Title/Summary/Keyword: 네트워크 위협탐지

Search Result 202, Processing Time 0.025 seconds

A Study on Improving Precision Rate in Security Events Using Cyber Attack Dictionary and TF-IDF (공격키워드 사전 및 TF-IDF를 적용한 침입탐지 정탐률 향상 연구)

  • Jongkwan Kim;Myongsoo Kim
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.9-19
    • /
    • 2022
  • As the expansion of digital transformation, we are more exposed to the threat of cyber attacks, and many institution or company is operating a signature-based intrusion prevention system at the forefront of the network to prevent the inflow of attacks. However, in order to provide appropriate services to the related ICT system, strict blocking rules cannot be applied, causing many false events and lowering operational efficiency. Therefore, many research projects using artificial intelligence are being performed to improve attack detection accuracy. Most researches were performed using a specific research data set which cannot be seen in real network, so it was impossible to use in the actual system. In this paper, we propose a technique for classifying major attack keywords in the security event log collected from the actual system, assigning a weight to each key keyword, and then performing a similarity check using TF-IDF to determine whether an actual attack has occurred.

Malicious Traffic Classification Using Mitre ATT&CK and Machine Learning Based on UNSW-NB15 Dataset (마이터 어택과 머신러닝을 이용한 UNSW-NB15 데이터셋 기반 유해 트래픽 분류)

  • Yoon, Dong Hyun;Koo, Ja Hwan;Won, Dong Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • This study proposed a classification of malicious network traffic using the cyber threat framework(Mitre ATT&CK) and machine learning to solve the real-time traffic detection problems faced by current security monitoring systems. We applied a network traffic dataset called UNSW-NB15 to the Mitre ATT&CK framework to transform the label and generate the final dataset through rare class processing. After learning several boosting-based ensemble models using the generated final dataset, we demonstrated how these ensemble models classify network traffic using various performance metrics. Based on the F-1 score, we showed that XGBoost with no rare class processing is the best in the multi-class traffic environment. We recognized that machine learning ensemble models through Mitre ATT&CK label conversion and oversampling processing have differences over existing studies, but have limitations due to (1) the inability to match perfectly when converting between existing datasets and Mitre ATT&CK labels and (2) the presence of excessive sparse classes. Nevertheless, Catboost with B-SMOTE achieved the classification accuracy of 0.9526, which is expected to be able to automatically detect normal/abnormal network traffic.

Development of Intrusion Detection System for GOOSE Protocol Based on the Snort (GOOSE 프로토콜 환경에서 Snort 기반의 침입 탐지 시스템 개발)

  • Kim, Hyeong-Dong;Kim, Ki-Hyun;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.6
    • /
    • pp.1181-1190
    • /
    • 2013
  • The GOOSE(Generic Object Oriented Substation Event) is used as a network protocol to communicate between IEDs(Intelligent Electronic Devices) in international standard IEC 61850 of substation automation system. Nevertheless, the GOOSE protocol is facing many similar threats used in TCP/IP protocol due to ethernet-based operation. In this paper, we develop a IDS(Intrusion Detection System) for secure GOOSE Protocol using open software-based IDS Snort. In this IDS, two security functions for keyword search and DoS attack detection are implemented through improvement of decoding and preprocessing component modules. And we also implement the GOOSE IDS and verify its accuracy using GOOSE packet generation and communication experiment.

Ethereum Phishing Scam Detection based on Graph Embedding and Semi-Supervised Learning (그래프 임베딩 및 준지도 기반의 이더리움 피싱 스캠 탐지)

  • Yoo-Young Cheong;Gyoung-Tae Kim;Dong-Hyuk Im
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.5
    • /
    • pp.165-170
    • /
    • 2023
  • With the recent rise of blockchain technology, cryptocurrency platforms using it are increasing, and currency transactions are being actively conducted. However, crimes that abuse the characteristics of cryptocurrency are also increasing, which is a problem. In particular, phishing scams account for more than a majority of Ethereum cybercrime and are considered a major security threat. Therefore, effective phishing scams detection methods are urgently needed. However, it is difficult to provide sufficient data for supervised learning due to the problem of data imbalance caused by the lack of phishing addresses labeled in the Ethereum participating account address. To address this, this paper proposes a phishing scams detection method that uses both Trans2vec, an effective graph embedding techique considering Ethereum transaction networks, and semi-supervised learning model Tri-training to make the most of not only labeled data but also unlabeled data.

TCAM Partitioning for High-Performance Packet Classification (고성능 패킷 분류를 위한 TCAM 분할)

  • Kim Kyu-Ho;Kang Seok-Min;Song Il-Seop;Kwon Teack-Geun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2B
    • /
    • pp.91-97
    • /
    • 2006
  • As increasing the network bandwidth, the threat of a network also increases with emerging various new services. For a high-performance network security, It is generally used that high-speed packet classification methods which employ hardware like TCAM. There needs an method using these devices efficiently because they are expensive and their capacity is not sufficient. In this paper, we propose an efficient packet classification using a Ternary-CAM(TCAM) which is widely used device for high-speed packet classification in which we have applied Snort rule set for the well-known intrusion detection system. In order to save the size of an expensive TCAM, we have eliminated duplicated IP addresses and port numbers in the rule according to the partitioning of a table in the TCAM, and we have represented negation and range rules with reduced TCAM size. We also keep advantages of low TCAM capacity consumption and reduce the number of TCAM lookups by decreasing the TCAM partitioning using combining port numbers. According to simulation results on our TCAM partitioning, the size of a TCAM can be reduced by upto 98$\%$ and the performance does not degrade significantly for high-speed packet classification with a large amount of rules.

A study of Modeling and Simulation for Analyzing DDoS Attack Damage Scale and Defence Mechanism Expense (DDoS 공격 피해 규모 및 대응기법 비용분석을 위한 모델링 및 시뮬레이션 기술연구)

  • Kim, Ji-Yeon;Lee, Ju-Li;Park, Eun-Ji;Jang, Eun-Young;Kim, Hyung-Jong
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.39-47
    • /
    • 2009
  • Recently, the threat of DDoS attacks is increasing and many companies are planned to deploy the DDoS defense solutions in their networks. The DDoS attack usually transmits heavy traffic data to networks or servers and they cannot handle the normal service requests because of running out of resources. Since it is very hard to prevent the DDoS attack beforehand, the strategic plan is very important. In this work, we have conducted modeling and simulation of the DDoS attack by changing the number of servers and estimated the duration that services are available. In this work, the modeling and simulation is conducted using OPNET Modeler. The simulation result can be used as a parameter of trade-off analysis of DDoS defense cost and the service's value. In addition, we have presented a way of estimating the cost effectiveness in deployment of the DDoS defense system.

Development of NVR Real-Time Alert System through AI Event Detection and VPN Integration (AI 이벤트 탐지와 VPN 통합을 통한 NVR 실시간 경보 시스템 개발)

  • Byeong-Seon Park;Yong-Kab Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.5
    • /
    • pp.1-7
    • /
    • 2024
  • This paper presents the design and implementation of a VPN (Virtual Private Network) module to address the need for external access and functional expansion of NVR (Network Video Recorder) systems. NVR systems play a critical role in enhancing security across various industries through real-time monitoring and recording. However, they are vulnerable to security threats, particularly when a secure connection to external networks is required. To resolve this issue, this study applied a VPN module to ensure that NVR systems can communicate securely with external networks. This approach enabled remote access and real-time event notifications. Performance tests confirmed 100% accuracy in event notifications. This research contributes to improving the security and operational efficiency of NVR systems, highlighting the necessity and utility of VPN modules for secure communication with external networks.

An Architecture of a Dynamic Cyber Attack Tree: Attributes Approach (능동적인 사이버 공격 트리 설계: 애트리뷰트 접근)

  • Eom, Jung-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.3
    • /
    • pp.67-74
    • /
    • 2011
  • In this paper, we presented a dynamic cyber attack tree which can describe an attack scenario flexibly for an active cyber attack model could be detected complex and transformed attack method. An attack tree provides a formal and methodical route of describing the security safeguard on varying attacks against network system. The existent attack tree can describe attack scenario as using vertex, edge and composition. But an attack tree has the limitations to express complex and new attack due to the restriction of attack tree's attributes. We solved the limitations of the existent attack tree as adding an threat occurrence probability and 2 components of composition in the attributes. Firstly, we improved the flexibility to describe complex and transformed attack method, and reduced the ambiguity of attack sequence, as reinforcing composition. And we can identify the risk level of attack at each attack phase from child node to parent node as adding an threat occurrence probability.

A Study on the High-Speed Malware Propagation Method for Verification of Threat Propagation Prevent Technology in IoT Infrastructure (IoT 인프라 공격 확산 방지 기술 성능 검증을 위한 악성코드 고속 확산 기법 연구)

  • Hwang, Song-yi;Kim, Jeong-Nyeo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.617-635
    • /
    • 2021
  • Internet of Things (IoT) devices connected to the network without appropriate security solutions have become a serious security threat to ICT infrastructure. Moreover, due to the nature of IoT devices, it is difficult to apply currently existing security solutions. As a result, IoT devices have easily become targets for cyber attackers, and malware attacks on IoT devices are actually increasing every year. Even though several security solutions are being developed to protect IoT infrastructure, there is a great risk to apply unverified security solutions to real-world environments. Therefore, verification tools to verify the functionality and performance of the developed security solutions are also needed. Furthermore, just as security threats vary, there are several security solution s that defend against them, requiring suitable verification tools based on the characteristics of each security solution. In this paper, we propose an high-speed malware propagation tool that spreads malware at high speed in the IoT infrastructure. Also, we can verify the functionality of the security solution that detect and quickly block attacks spreading in IoT infrastructure by using the high-speed malware propagation tool.

Low Power Security Architecture for the Internet of Things (사물인터넷을 위한 저전력 보안 아키텍쳐)

  • Yun, Sun-woo;Park, Na-eun;Lee, Il-gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.199-201
    • /
    • 2021
  • The Internet of Things (IoT) is a technology that can organically connect people and things without time and space constraints by using communication network technology and sensors, and transmit and receive data in real time. The IoT used in all industrial fields has limitations in terms of storage allocation, such as device size, memory capacity, and data transmission performance, so it is important to manage power consumption to effectively utilize the limited battery capacity. In the prior research, there is a problem in that security is deteriorated instead of improving power efficiency by lightening the security algorithm of the encryption module. In this study, we proposes a low-power security architecture that can utilize high-performance security algorithms in the IoT environment. This can provide high security and power efficiency by using relatively complex security modules in low-power environments by executing security modules only when threat detection is required based on inspection results.

  • PDF