정보보안을 위한 IDS(Intrusion Detection Systems)는 통상적으로 서명기반(signature based) 침입탐지시스템과 이상기반(anomaly-based) 침입 탐지시스템으로 분류한다. 이 중에서도 네트워크에서 발생하는 트래픽 데이터를 기계학습으로 분석하는 이상기반 IDS 연구가 활발하게 진행됐다. 본 논문에서는 공격 유형 학습에 사용되는 데이터에 존재하는 희소 클래스 문제로 인한 성능 저하를 해결하기 위한 전처리 방안에 대해 연구했다. 희소 클래스(Rare Class)와 준 희소 클래스(Semi Rare Class)를 기준으로 데이터를 재구성하여 기계학습의 분류 성능의 개선에 대하여 실험했다. 재구성된 3종의 데이터 세트에 대하여 Wrapper와 Filter 방식을 연이어 적용하는 하이브리드 특징 선택을 수행한 이후에 Quantile Scaler로 정규화를 처리하여 전처리를 완료한다. 준비된 데이터는 DNN(Deep Neural Network) 모델로 학습한 후 TP(True Positive)와 FN(False Negative)를 기준으로 분류 성능을 평가했다. 이 연구를 통해 3종류의 데이터 세트에서 분류 성능이 모두 개선되는 결과를 얻었다.
기술이 발전함에 따라 사용자에게 가해지는 네트워크상의 최신 보안 위협이 늘어나고 있다. 해커가 악의적인 목적을 가지고 산업 또는 기업의 시스템을 공격함으로써 기밀정보가 유출되거나 사이버 테러, 정보 자산의 침해, 금전적인 손해 등의 많은 사회 문제를 야기한다. 복잡하고 다양해지는 위협으로 인해 현 보안 인력만으로 모든 위협을 탐지하고 분석하기에는 역부족인 상황이 되었다. 특히, 365일 24시간으로 돌아가는 산업 기반 시설에서 사용하는 SCADA(Supervisory Control And Data Acquisition)는 정적인 데이터를 수집 및 분석하므로, 실시간으로 발생하는 보안 위협에 대해서는 매우 취약하다. 본 논문에서는 실시간으로 시스템의 상태를 모니터링이 가능하고 보안 위협을 탐지하는 강력한 통합 보안 관리 시스템인 SIEM(Security Information and Event Management)에 대해 소개한다. 다음으로 다양한 기업의 SIEM 솔루션들과 오픈 소스로 배포되는 AlienVault 사의 OSSIM(Open Source SIEM) 을 비교분석하고, OSSIM을 이용한 활용 사례와 OSSIM을 활용할 수 있는 방안을 제시한다.
최근 인터넷의 비약적인 발전으로 인하여, 해킹과 바이러스가 빠르게 퍼지고 있다. 이러한 역기능에 대응하기 위하여, 방화벽과 침입탐지시스템 같은 보안시스템이 개발되어 활용되고 있지만, 이러한 기법은 공격에 대한 한계점을 가지고 있어, 해킹 사고는 계속적으로 증가하고 있다. 이에 따라, 악의적 의도를 가진 침입자를 추적할 수 있는 자동화된 실시간 역추적 기법을 적용하여, 해킹 자체의 발생건수를 줄일 수 있는 방법에 대한 연구가 필요하게 되었다. 본 논문에서는 이러한 문제를 해결하기 위하여 IP 역추적 시스템을 제안하고자 한다. 역추적을 위하여 ICMP 형태의 역추적 메시지를 구현하고, 로컬 네트워크에 배치되는 에이전트와 관리 네트워크에 배치되는 서버 프레임워크를 설계하고, 능동형 보안시스템을 기반으로 침입자를 추적하고 고립화 하기위한 보안메커니즘을 구현한다.
많은 공격과 네트워크 데이터 처리량이 증가하는 오늘날의 네트워크 수요를 NIDS가 유지시키기 위해 하드웨어 및 소프트웨어 시스템 구조에서 급진적 새로운 접근이 필요하다. 본 논문에서는 패킷 필터링과 트래픽 측정 뿐아니라 고의행위를 검출하는 패킷 페이로드 검열을 지원하는 네트워크 프로세서 기반의 인라인 모드 NIS를 제안하고, 특히 2한계 경색구조를 사용하여 심층 패킷 정열기능으로부터 펄터링과 측정기능을 분리한다 그래서 심층 패킷 검열기능의 복잡하고 시간소비 곽이 인라인 모드 시스템의 기본 기능을 멈추게 하거나 방해하지 않게 했다. 프로토타입 NP 기반의 NIDS는 PC 플랫폼에서 구현하였으므로 실험결과는 제안한 구조가 첫 단계에서 두개의 기가비트 포트의 전체 트래픽을 측정과 필터가 신뢰할 수 있음을 보였다. 일반목적 프로세스 기만의 검열 성능과 비교 가능한 두 번째 단계에서 실시간으로 320Mbps까지 패킷 페이로드를 주사할 수 있었다. 그러나 시뮬레이션에서 100bps APP 해법을 선택할 때 선로상 속도가 2Gbps까지 가능한 심층 패킷 검색 결과를 얻었다.
본 연구는 현 보안 관제 시스템이 직면한 실시간 트래픽 탐지 문제를 해결하기 위해 사이버 위협 프레임워크인 마이터 어택과 머신러닝을 이용하여 유해 네트워크 트래픽을 분류하는 방안을 제안하였다. 마이터 어택 프레임워크에 네트워크 트래픽 데이터셋인 UNSW-NB15를 적용하여 라벨을 변환 후 희소 클래스 처리를 통해 최종 데이터셋을 생성하였다. 생성된 최종 데이터셋을 사용하여 부스팅 기반의 앙상블 모델을 학습시킨 후 이러한 앙상블 모델들이 다양한 성능 측정 지표로 어떻게 네트워크 트래픽을 분류하는지 평가하였다. 그 결과 F-1 스코어를 기준으로 평가하였을 때 희소 클래스 미처리한 XGBoost가 멀티 클래스 트래픽 환경에서 가장 우수함을 보였다. 학습하기 어려운 소수의 공격클래스까지 포함하여 마이터 어택라벨 변환 및 오버샘플링처리를 통한 머신러닝은 기존 연구 대비 차별점을 가지고 있으나, 기존 데이터셋과 마이터 어택 라벨 간의 변환 시 완벽하게 일치할 수 없는 점과 지나친 희소 클래스 존재로 인한 한계가 있음을 인지하였다. 그럼에도 불구하고 B-SMOTE를 적용한 Catboost는 0.9526의 분류 정확도를 달성하였고 이는 정상/비정상 네트워크 트래픽을 자동으로 탐지할 수 있을 것으로 보인다.
최근 네트워크 구성이 복잡해짐에 따라 정책기반의 네트워크 관리기술에 대한 필요성이 증가하고 있으며, 특히 네트워크 보안관리를 위한 새로운 패러다임으로 정책기반의 네트워크 관리 기술이 도입되고 있다. 보안정책 서버는 새로운 정책을 입력하거나 기존의 정책을 수정, 삭제하는 기능과 보안정책 결정 요구 발생시 정책결정을 수행하여야 하는데 이를 위해서는 보안정책 실행시스템에서 보내온 경보 메시지에 대한 분석 및 관리가 필요하다. 따라서 이 논문에서는 정책기반 네트워크 보안관리 프레임워크의 구조 중에서 보안정책 서버의 효율적인 보안정책 수립 및 수행을 지원하기 위한 경보데이타 분석기를 설계하고 구현한다. 경보 데이타 저장과 분석을 위해서 데이타베이스 스키마를 설계하고 저장된 경보데이타를 분석하는 모듈을 구현하며 경보데이타 마이닝 엔진을 구현하여 경보데이타를 효율적으로 분석하고 이를 통해 경보들의 새로운 유사패턴그룹이나 공격시퀀스를 유추하여 능동적인 보안정책관리를 지원할 수 있도록 한다.
본 논문에서는 네트워크의 생존성을 보장하고 신뢰성 높은 인터넷 서비스를 제공하기 위한 차세대 보안기술로서 인터넷의 액세스점에 위치하는 이상 트래픽 제어기(ATC, Abnormal Traffic Controller)를 제안한다. ATC의 주요 개념은 이상 트래픽 감지와 트래픽 제어기술에 있는데, 네트워크에서 에러의 요인이 계속 존재하거나 반복되는 경우 이상 트래픽 제어를 통해 서비스 완료성을 가능한 보장하는 것을 그 목적으로 한다. 분석결과, 이상 트래픽 중 유효 트래픽의 비율이 $30{\%}$를 초과하는 경우에는 이상 트래픽에 대한 제어정책을 사용하는 ATC는 기존의 네트워크 노드 뿐만 아니라 차단정책을 사용하는 ATC보다 우수한 성능을 나타내었다. 과다 트래픽의 알려지지 않은 공격이 발생하는 경우, 높은 오탐지율로 인해 기존의 네트워크 IDS로는 한계가 있는데, 이러한 환경에서 ATC는 네트워크 노드를 도와서 이상 트래픽을 제어하는데 주요한 역할을 수행하게 된다.
패턴 매칭(Pattern Matching)은 네트워크 침입방지 시스템에서 가장 중요한 부분의 하나며 많은 연산을 필요로 한다. 날로 증가되는 많은 수의 공격 패턴을 다루기 위해, 네트워크 침입방지 시스템에서는 회선 속도로 들어오는 패킷을 처리 할 수 있는 다중 패턴 매칭 방법이 필수적이다. 본 논문에서는 현재 많이 사용되고있는 네트워크 침입방지 및 탐지 시스템인 Snort와 이것의 패턴 매칭 특성을 분석한다. 침입방지 시스템을 위한 패턴 매칭 방법은 다양한 길이를 갖는 많은 수의 패턴과 대소문자 구분 없는 패턴 매칭을 효과적으로 다룰 수 있어야 한다. 또한 여러 개의 입력 문자들을 동시에 처리 할 수 있어야 한다. 본 논문에서 Shift-OR 패턴 매칭 알고리즘에 기반을 둔 다중 패턴 매칭 하드웨어 가속기를 제시하고 여러 가지 가정 하에서 성능 측정을 하였다. 성능 측정에 따르면 제시된 하드웨어 가속기는 현재 Snort에서 사용되는 가장 빠른 소프트웨어 다중 패턴 매칭 보다 80배 이상 빠를 수 있다.
망분리 네트워크에서 보안관제를 할 경우 내부망 또는 위험도가 높은 구간에서는 평시 이상징후 탐지가 거의 이루어지지 않는다. 그렇기 때문에 보안 네트워크 구축 후 최적화 된 보안구조를 완성하기 위해서 망분리된 내부방에서의 최신 사이버 위협 이상징후를 평가할 수 있는 모델이 필요하다. 본 연구에서 일반 네트워크와 망분리 네트워크에서 발생하는 사이버 취약점과 악성코드를 데이터셋으로 발생시켜 평가하여, 망분리 내부망 사이버 공격에 위협 분석 및 최신 사이버 취약점을 대비 할 수 있게 하고, 특성에 맞는 사이버 보안 테스트 평가 체계를 구축하였다. 이를 실제 망분리 기관에 적용 가능한 평가모델을 설계 하고, 테스트 망을 각 상황별로 구축하여 실시간 보안관제 평가 모델을 적용하였다.
인터넷 컴퓨팅 환경의 변화, 새로운 서비스 출현, 그리고 지능화되어 가는 해커들의 다양한 공격으로 인한 규칙 기반 침입탐지시스템의 한계점을 극복하기 위해 기계학습 및 딥러닝 기술을 활용한 네트워크 이상 검출(NAD: Network Anomaly Detection)에 대한 관심이 집중되고 있다. NAD를 위한 대부분의 기존 기계학습 및 딥러닝 기술은 '정상'과 '공격'으로 레이블링된 훈련용 데이터 셋을 학습하는 지도학습 방법을 사용한다. 본 논문에서는 공격의 징후가 없는 일상의 네트워크에서 수집할 수 있는 레이블링이 필요 없는 데이터 셋을 이용하는 비지도학습 오토 엔코더(AE: AutoEncoder)를 활용한 NAD 적용 가능성을 제시한다. AE 성능을 검증하기 위해 NSL-KDD 훈련 및 시험 데이터 셋을 사용해 정확도, 정밀도, 재현율, f1-점수, 그리고 ROC AUC (Receiver Operating Characteristic Area Under Curve) 값을 보인다. 특히 이들 성능지표를 대상으로 AE의 층수, 규제 강도, 그리고 디노이징 효과 등을 분석하여 레퍼런스 모델을 제시하였다. AE의 훈련 데이터 셋에 대한 재생오류 82-th 백분위수를 기준 값으로 KDDTest+와 KDDTest-21 시험 데이터 셋에 대해 90.4%와 89% f1-점수를 각각 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.