• Title/Summary/Keyword: 내부마찰

Search Result 527, Processing Time 0.021 seconds

An Analysis of Horizontal Behaviour of H-Pile under Mechanically Stabilized Earth Wall Abutment (보강토 교대 하부 H-Pile 수평 거동특성 연구)

  • Kim, Nagyoung;Jeon, Kyungsoo;Lee, Yongjun;Jun, Jintaek;Shim, Jaewon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.47-59
    • /
    • 2008
  • Application of mechanically stabilized earth wall (MSEW) abutment has been rapidly increasing in United States of America, Pennsylvania since 2002. MSEW is effective for reducing construction cost and period compared to general concrete reinforced wall. In the paper, theoretical background and conventional criterion of MSEW abutment that is widely used abroad are analyzed. Based on the results, application of suitable MSEW abutment to domestic bridge type is examined. For the application of MSEW abutment in Korea, load interacting with upper shoe in domestic bridge types and structural analyses of beam seat and pile are investigated. As a result, all applications are possible except for PSC BOX Bridge that has heavy self-weight of girder. Through two and three dimensional numerical analyses, horizontal behaviour mechanisms between pile and MSEW were analyzed and field tests are also carried out for seven piles behind earth walls. From results of field tests, it is confirmed that an angle of internal friction of backfill material needs to be greater than 34 degree to use H-Pile as foundation of MSEW.

  • PDF

Behavior of Floating Base Plate by Stress Delivery Mechanism (부양형 팽이기초의 하중전달 메커니즘에 따른 거동)

  • Chung, Jin-Hyuck;Jung, Hye-Kwun;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • Up to now, common studies of top base have concentrated upon bearing capacity and settlement by in-situ loading test in Japan and Korea. But most of all preceding study for top base must analyze how to deliver overburden loading on bottom of foundation. Therefore, in this study, the stress delivery mechanism of Top-Base Foundation developed in Japan and Floating Top Base developed in Korea is investigated through numerical analysis and laboratory model test. Analyzing the load delivery mechanism of top base, it was found that the division rate of load reduction of top base for overburden load was largest in peripheral skin friction between the top base and the crushed stone. Further, total stress dispersion angle of Top-Base Foundation including internal stress dispersion effect of top base was $41.8^{\circ}$ and total stress dispersion angle of Floating Top Base was $44.5^{\circ}$.

Analytical study on resisting moment of concrete pole installed in sloped ground (콘크리트 전주의 경사지 저항 모멘트에 관한 해석 연구)

  • Shin, Dong-Geun;Lee, Seung-Ryun;Yi, Gyu-Sei;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.842-847
    • /
    • 2007
  • In this study, for the purpose of estimating the resisting moment of sloped ground based on level ground fall down safety equation in design specification, compute it depends on penetration depth of concrete pile applying modulus of foundation about the angle of internal friction, cohesion, unit weight of soil, classes of the ground, sandy or clay soil, and verify established study using L-Pile Plus13.8. Also, select four cases that characteristics of soil depending on the soil grade is considered and compute the 12m length concrete pile's resisting moment of the ground those angle is changing from $0^{\circ}{\sim}35^{\circ},\;step\;5^{\circ}$. In the result, identify that the resisting moment of ground decreases depending on ground slope. Thus, increasing of penetration depth is required.

  • PDF

A Preliminary Study on Reduction of Shrinkage Stress in Concrete Slabs (콘크리트 슬래브 건조수축 응력 감소에 관한 초기연구)

  • Park, Jeong-Woo;Jeong, Young-Do;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.87-94
    • /
    • 2009
  • Volume of concrete slab changes by variations of temperature and moisture after its placement. Shrinkage due to evaporation causes tensile stress in the slab when contraction of the slab is restrained by its self weight, friction with subbase, and etc. Actual tensile stress caused by the shrinkage was less than theoretically predicted stress according to previous studies. It was the stress reduction due to visco-elastic property of the early-age concrete slab partially restrained. In this study, strains of restrained circumferential, unrestrained circumferential, and unrestrained square pillar concrete specimens were measured to investigate stress reduction of the specimens with age of concrete. Elastic modulus of the concrete was measured at the age of 1, 3, 7, 14, 28 days and penetration test was performed. The stress reduction was calculated by input the test results into theoretical equations suggested by previous researchers. The stress reduction of the restrained concrete specimens will be applied to design of concrete pavements based on results of the study.

  • PDF

Evaluation of GIS-based Landslide Hazard Mapping (GIS 기반 산사태 예측모형의 적용성 평가)

  • Oh, Kyoung-Doo;Hong, Il-Pyo;Jun, Byong-Ho;Ahn, Won-Sik;Lee, Mee-Young
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.1 s.162
    • /
    • pp.23-33
    • /
    • 2006
  • In this study, application potential of SINMAP, a GIS-based landslide hazard mapping tool, is evaluated through a case study. Through the application to the severe landslide events occurred during a heavy storm in 1991 on the Mt. Dalbong area about 78 kilometers south from Seoul, SINMAP successfully spotted most landslide sites. The effects and proper ranges of three calibration parameters of SINMAP, i.e. the soil internal friction angle, the combined cohesion of tree roots and soil, and T/R, were examined through comparison of predicted landslides with the landslide inventory data. From the findings of this study, it seems that SINMAP could be used as an effective screening tool for landslide hazard mapping especially for mountain areas with fairly steep slopes and relatively thin soil layers.

Electromagnetic Retarder's Modeling and Voltage Control (전자기형 리타더의 모델링 및 전압제어)

  • Jung, sung-chul;Lee, ik-sun;Ko, jong-sun
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.171-173
    • /
    • 2016
  • 일반적으로 대형 버스 및 트럭 등 같은 경우, 부하가 아주 크다. 또한 내리막길이나 장거리 운행 시에 잦은 제동으로 인하여 마찰을 이용한 기존 방식의 브레이크들은 브레이크 파열 및 페이드 현상 때문에 제동 안전성에 문제가 있다. 이러한 제동 부담을 분담하기 위해 현재 보조브레이크(리타더)가 필수적이며, 엔진 계통의 보조브레이크가 아닌 비접촉식 브레이크 같은 친환경 보조브레이크가 요구되고 있다. 그리고 차량 제동시 발생하는 기계에너지를 전기에너지로 회생하여 에너지효율을 향상시키려는 연구가 현재 활발히 진행되고 있다. 본 논문에서는 와전류를 이용한 전자기형 리타더에서 발생되는 전기에너지를 회수하기 위한 전압 제어 방법을 다룰 것이다. 리타더의 제동에너지를 전기에너지로 회생하기 위해 L-C 공진회로로 구성하였다. 리타더를 자여자 유도발전기(Self-Excited Induction Generator)로 모델링 하였고 이를 토대로 시뮬레이션 및 실험을 진행하였다. 자여자 유도발전기의 구동 조건에 대해서 언급하고 이를 파라미터에 따라 3-D map으로 만들었다. 또 회로 중의 FET 게이트에 전압을 인가하는 제어장치의 구동펄스에 따라 바뀌는 공진회로의 전압을 분석하였으며, 이 전압을 제어하기 위하여 PI 제어기를 이용한 알고리즘을 제안하였다. 이 전압을 3상 AC/DC컨버터를 통과한 후 DC/DC컨버터를 통하여 차량 내부의 배터리에 충전되는데 제어를 위해 3상 AC/DC에서의 전압 리플을 MA(Moving Average) 방식의 필터를 사용하여 DC/DC컨버터의 입력에 맞도록 제어하였다. 이와 같이 전자기형 리타더에서 유도되는 전압을 제어기의 제어 펄스에 따라 제어할 수 있으며 Matlab Simulink를 이용하여 리타더의 모델과 그 제어기의 타당성을 보였다. 또 실제 M-G Set 실험을 통하여 그 연관성을 확인하였다.

  • PDF

Embankment and Excavation Behaviour with Shear Parameters of Soft Clayey Soil in FEM (점성토의 유한요소해석에서 전단파라미터에 따른 성토 및 굴착 거동)

  • Kim, Byung Il;Choi, Chanyong;Hong, Kang Han;Han, Sang Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.5-17
    • /
    • 2018
  • In this study, the in-situ stress, strength and stress-strain characteristics with shear parameters (UU, CU, ${\bar{CU}}$) are analytically evaluated and the stability analyses are carried out under loading/unloading conditions. The in-situ stress and the stress-strain behaviour may become different according to input shear parameters in finite element analyses with construction step, Especially, if the internal friction angle in Mohr-Coulomb model is set to zero, the in-situ stress and the stress-strain behaviour might not be properly predicted. The results from CU parameter of total stress analysis have no significant difference with the results from CU of effective stress analysis. Therefore, in the numerical analysis for soft ground, CU parameters can be applied to predict in-situ stress and stress-strain behaviors. In addition, the calculation method was proposed to determine the shear parameter of Mohr-Coulomb model, which is corresponding to the shear strength equivalent to that of in-situ soil.

A Seasonal Risk Analysis and Damage Effects Assessment by Gas Leakage of Chemical Plant using 3D Scan and FLACS (3D 스캔과 FLACS를 활용한 화학플랜트 가스 누출의 계절별 위험성 및 피해영향 평가)

  • Kim, Jiyoung;Kim, Jiyu;Kim, Euisoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • The process and facilities of modern chemical plants are becoming increasingly complex, there is possibility of potential risk. Internal chemicals generate stress concentration when operated due to turbulence, laminar flow, pressure, temperature, friction, etc. It causes cumulative fatigue damage, which can damage or rupture chemical facilities and devices. The statistics of chemical accidents found that the highest rate of occurrence was in summer, and in the last five years statistics on chemical accidents, leakage incidents make up a decent percentage of accidents. Chemical leaks can cause serious human damage and economic damage, including explosions and environmental pollution. In this study, based on the leak accident of chemical plant, the risk analysis, and damage effects assessment were estimated using a 3D scanner and FLACS. As a result, if chemicals leak in summer, the risk is higher than in other seasons, the seasonal safety management measures, and countermeasure were estimated.

Numerical analyses using CFD on the pressure losses of the grout flow with variation of joint roughness and grout features (전산유동역학을 이용한 절리 거칠기 및 주입재 특성에 따른 그라우트 주입 시 압력 손실 해석)

  • Sagong, Myung;Ryu, Sung-ha
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.989-1002
    • /
    • 2018
  • Grouting for the rock joint is to strengthen the rock strata by infiltrating cement grout materials into the rock joints. Grouting is one of a field of study which is difficult to develop deterministic and quantitative design approach because of multiphase behaviors of grout materials and 3 dimensional features of rock joints. Therefore, GIN (Grouting Intensity Number) can be a good index with appropriate monitoring of pressure and volume of grout. In this paper, we investigate the effects of joint roughness (JRC) and rheology of cement material during the infiltration of cement grout material into rock joint through CFD (computational fluid dynamics) analyses. With rough joint surface and increase of WC ratio, the frictional resistance during the grouting increases. The results have been summarized with polynomial correlations.

Some Dynamical Issues about the Tsushima Warm Current based on Bibliographical Review (서지학적으로 본 대마난류의 몇 가지 역학적 쟁점들)

  • SEUNG, YOUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.439-447
    • /
    • 2019
  • Some dynamical issues about the Tsushima Warm Current (TWC) are reviewed and checked for the remaining unresolved problems, focusing on the formation of the TWC, seasonal variation of its volume transport and its branching in the East Sea. The TWC is a part of the North Pacific (NP) subtropical gyre driven by the NP global wind system. However, the quantitative amount of volume transport is sensitive to friction, basin geometry, barrier effect and so on. Among many causes suggested by many scientists, subpolar winds are found to be most closely related with the seasonal variation of TWC volume transport. However, more studies relating the latter not only to the subpolar winds but also to those including the subtropical winds seem to be required. The branching of the TWC has been known to be due to the western intensification for the East Korean Warm Current (EKWC) and to the bottom trapping for the Nearshore Branch. Since the former hypothesis is problematic in explaining the seasonal variation of the EKWC, other candidate mechanisms may need to be considered.