• Title/Summary/Keyword: 난류유동해석

Search Result 843, Processing Time 0.026 seconds

Numerical Analysis of Thermal and Flow affected by the variation of rib interval and Pressure drop Characteristics (리브 간격 변화에 따른 열.유동 수치해석 및 압력 저하 특성)

  • Chung, Han-Shik;Lee, Gyeong-Wan;Shin, Yong-Han;Choi, Soon-Ho;Jeong, Hyo-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.616-624
    • /
    • 2011
  • The flow characteristics and heat transfer augment on the periodically arranged semi-circular ribs in a rectangular channel for turbulent flow has been investigated numerically. The aspect ratio of the rectangular channel was AR=5, the rib height to hydraulic diameter ratio were 0.07 and rib height to channel height ratio was set as e/H=0.117 for various PR(rib pitch-to-rib height rate) between 8~14, respectively. The SST k-${\omega}$ turbulence model and v2-f turbulence model were used to find out the heat transfer and the flow characteristics of near the wall which are suited to obtain realistic phenomena. The numerical analysis results show turbulent flow characteristics, heat transfer enhancement and friction factor as observed experimentally. The results predict that turbulent kinetic energy(k) is closely relative to the diffusion of recirculation flow. and v2-f turbulence model simulation results have a good agreement with experimental values.

Analysis of Turbulent flow using Pressure Gradient Method (압력구배기법을 이용한 난류 유동장 해석)

  • 유근종
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 1999
  • Applicability of the pressure gradient method which is formulated based on pressure gradient is verified against turbulent flow analysis. In the pressure gradient method, pressure gradient instead of pressure itself is obtained using continuity constraint. Since correct pressure gradient is found only when mass conservation is satisfied, pressure gradient method can reflect physics of flow field properly The pressure gradient method is formulated with semi-staggered grid system which locates each primitive variables on the same grid point but evaluates pressure gradient in-between. This grid system ensures easy programming and reflection of correct physics in analysis. For verifying applicability of this method, the pressure gradient method is applied to turbulent flow analysis with low Reynolds number $\kappa$-$\varepsilon$ model. Turbulent flows include fully developed channel flow, backward-facing step flow, and conical diffuser flow. Prediction results show that the pressure gradient method can be applied to turbulent flow analysis. However, the pressure gradient method requires somewhat long computation time. Proper way to find optimum under-relaxation factor, $\gamma$, is also need to be developed.

  • PDF

Numerical Simulation of Pipe Flow with an Obstacle by applying Turbulent Models (난류모형을 적용한 장애물이 있는 파이프내의 유동장 수치시뮬레이션)

  • Kwag Seung- Hyun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.523-528
    • /
    • 2005
  • The flow analysis is made to simulate the turbulent flow in the pipe with an obstacle. The models used are k-$\epsilon$, k-$\omega$, Spalart-Allmaras and Reynolds. The structured grid is used for the simulation The velocity vector, the pressure contour, the change of residual along the iteration number and the dynamic head are simulated for the comparison of four example cases. For the analysis, the commercial code is used.

Numerical Analysis of Effect of Transition Phenomenon on Dynamic Stall (Dynamic Stall에 천이 현상이 미치는 영향 분석)

  • Kim, Yeong-U;Kim, Ju-Hyeok;Lee, Ji-Hun;Park, Su-Hyeong
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.533-538
    • /
    • 2014
  • NACA0012형상을 사용하여 천이현상을 고려한 유동해석이 Dynamic Stall에 미치는 영향에 대해 살펴보았다. 천이 현상을 고려한 진동하는 익형의 공력 계수 변화를 비교하기 위해 완전 난류로 가정한 해석 결과와 실험 결과를 비교하였다. NACA0012익형을 사용하였으며 두께 변화에 따른 해석 결과를 비교하기 위해 NACA0009익형도 사용하였다. 정상유동해석의 천이 발생 지점과 비정상 유동해석의 천이 발생 지점을 비교하였으며, 익형주위의 유동결과를 비교하여 천이해석과 완전 난류해석 결과의 차이를 분석하였다.

  • PDF

자기부상열차의 공력 특성에 관한 수치 연구

  • Won, Seong-Sik;U, Dae-Cheon
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.55-57
    • /
    • 2016
  • 본 연구에서는 초고속 자기부상열차의 단면도를 통하여 2-D형상을 모델링하고 이를 기반으로 항력과 유동 특성에 대한 분석을 수행하였다. 유동의 마하수가 0.3 이상임을 고려하여 압축성 모델이 사용되었고, 난류모델은 Menter's k-w SST(Shear Stress Transport)모델을 적용시켰다. 2-D 해석과 자기부상열차의 특성상 열차가 공기중에서 주행하고 있는 것으로 가정하고 공력 특성을 해석하였다.

  • PDF

A study for laminar and turbulent boundary layer theory around a Joukowski and NACA-0012 airfoil by CFD (Airfoil 주변에서의 층류 및 난류경계층 이론에 대한 수치해석)

  • Je, Du-Ho;Hwang, Eun-Seong;Lee, Jang-Hyeoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1533-1539
    • /
    • 2013
  • In the present study, we compared the theory with CFD data about the boundary layer thickness, displacement thickness and momentum thickness. According to the freestream velocity, larminar and turbulent is decided and affect to the flow patterns around the airfoil The boundary layer thickness, displacement thickness and momentum thickness affect to the aerodynamic characteristics of the airfoil(e.g. lift, drag and pitching moment). The separation point is affected by varying angle of attack. In the present study, we used the Joukowski airfoil(c=1), and NACA0012 airfoil was used at CFD. The chord Reynolds number is $Re_c$=3,000, 700,000, respectively and the freestream velocity is 0.045, 10 m/s, respectively. In this paper, the data was a good agreement with that of experimental results, so we can analyze the various airfoil models.

A Study on Applicability of Turbulence Models for Unsteady Turbulent Flow with Temperature Variation (온도변화를 수반한 비정상 난류유동장에 대한 난류모델의 적용성에 관한 연구)

  • 유근종;전원대
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • The suitable turbulence model is found to be required in the course of establishing a proper analysis methodology for thermal stripping phenomena which are shown in strong temperature variation area such as reactors and propulsion devices. Three different turbulence models of $\kappa$-$\varepsilon$ model, modified $\kappa$-$\varepsilon$ model, and full Reynolds stress(FRS) model, are applied to analyze unsteady turbulent flows with temperature variation. Three test cases are selected for verification. These are vertical jet flows with water and sodium, and parallel jet flow with sodium. Analysis yields the conclusion that 3-D computation with FRS betters others. However, modified modeling is required to improve its heat transfer characteristic analysis. Further analysis is performed to find momentum variation effects on temperature distribution. It is found that the momentum increase results increase of fluid mixing and magnitude of temperature variation.

Analysis of Secondary Flow Effects on Turbulent Flow in Nuclear Reactor Fuel Rod Bundles (핵연료 집합체 내에서의 이차유동이 난류에 미치는 영향에 대한 해석적 분석)

  • Shon, Jae-Yeong;Park, Goon-Chul
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.275-284
    • /
    • 1991
  • It is important to predict the main feature of fully developed turbulent secondary flow through infinite triangular arrays of parallel rod bundles. One-equation turbulence model which include anisotropic eddy viscosity model was applied to predict the exact velocity field. For a constant properties, Reynolds equations were solved by the finite element method. Mean axial velocity near the wall is simulated by the law of the wall. The numerical results showed good agreement with avaiable experimental data. The strength of the secondary flow increased with Reynolds number but decreased with rod spacing, P/D (pitch-to-diameter). The secondary flow affects remarkably the distribution of the axial velocity, wall shear stress and turbulent kinetic energy in the closely packed rod array bundles.

  • PDF

Numerical Simulations for Design of a Liquid Rocket Engine (액체 로켓엔진 설계에서의 유동해석)

  • 김영목;채연석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.87-96
    • /
    • 1995
  • 인공위성의 궤도진입에 사용되는 액체추진제 로켓엔진의 개발에서 분사기 설계를 적절히 수정, 보완 할 목적으로 수행된 핵심부품별 유동해석의 내용이 기술되었다. 단일 격자계를 구성하기 어려운 복잡한 형상의 분사기 유동장에 대한 격자계 구성을 용이하게 하고, 3차원의 점성 유동해석을 컴퓨터 기억 용량에 제한없이 수행하기 위한 다중블럭 격자기법이 사용되었다. 분사기의 내부유동은 3차원 비압축성 Navier-Stokes 방정식으로 pseudocompressibility 방법을 이용하여 수치모사되었다. 정상상태의 해는 근사 인자분해에 의한 ADI 기법으로 계산되고, 공간미분항에 대해 nonstaggered 격자계에서 2차 중앙차분을 사용하며 수치해의 안정성을 위해 인공점성항을 추가하였다. 난류계산을 위해 Baldwin- Lomax의 대수적 난류모델에 다수의 벽면효과를 고려하였다. 해석결과는 분사기의 성능에 영향을 미칠 수 있는 유동조건에 따라 분석되었다.

  • PDF

Performance Assessment of Turbulence Models for the Prediction of Moderator Thermal Flow Inside CANDU Calandria (칼란드리아 내부의 감속재 열유동 해석을 위한 난류모델 성능 평가)

  • Lee, Gong-Hee;Bang, Young-Seok;Woo, Sweng-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.363-369
    • /
    • 2012
  • The moderator thermal flow in the CANDU calandria is generally complex and highly turbulent because of the interaction of the buoyancy force with the inlet jet inertia. In this study, the prediction performance of turbulence models for the accurate analysis of the moderator thermal flow are assessed by comparing the results calculated with various types of turbulence models in the commercial flow solver FLUENT with experimental data for the test vessel at Sheridan Park Engineering Laboratory (SPEL).Through this comparative study of turbulence models, it is concluded that turbulence models that include the source term to consider the effects of buoyancy on the turbulent flow should be used for the reliable prediction of the moderator thermal flow inside the CANDU calandria.