• 제목/요약/키워드: 나이브베이스

검색결과 18건 처리시간 0.028초

나이브베이스 분류자와 퍼지 추론을 이용한 적조 발생 예측의 성능향상 (Enhancing Red Tides Prediction using Fuzzy Reasoning and Naive Bayes Classifier)

  • 박선;이성로
    • 한국정보통신학회논문지
    • /
    • 제15권9호
    • /
    • pp.1881-1888
    • /
    • 2011
  • 적조란 유해조류의 일시적인 대 번식인 자연현상으로 어패류를 집단 폐사 시킨다. 적조에 의한 양식어업의 피해는 매년 발생하고 있다. 이 때문에 적조 발생을 미리 예측할 수 있으면 적조에 대한 피해를 최소화 시킬 수 있다. 적조발생 예측시 나이브베이스 분류자를 이용하면 좋은 예측결과를 얻을 수 있다. 그러나 나이브베이스를 이용한 결과는 단순한 발생 여부 만을 판별 할뿐 발생하는 적조가 어느 정도 증가 할지는 알 수 없다. 본 논문은 퍼지 추론과 나이브베이스 분류자를 이용한 새로운 적조발생 예측 방법을 제안한다. 제안방법은 적조 발생 예측의 정확률을 향상시키면서 적조생물 밀도의 증가율을 예측할 수 있다.

N-Gram 증강 나이브 베이스를 이용한 정확한 침입 탐지 (Accurate Intrusion Detection using n-Gram Augmented Naive Bayes)

  • 강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.285-288
    • /
    • 2008
  • 기계 학습을 응용한 많은 침입 탐지 시스템들은 n-그램 접근 방법을 주로 쓰고 있다. 그러나, n-그램 접근 방법은 주어진 시퀀스에서 획득한 n-그램들이 서로 겹치는 문제들을 가지고 있다. 본 연구에서는 이러한 문제들을 해결하기 위해, n-그램 증강 나이브 베이스 (n-gram augmented naive Bayes) 알고리즘을 침입 시퀀스의 분류에 적용하였다. 제안된 시스템의 성능을 평가하기 위해 n-그램 특징들을 사용하는 일반 나이브 베이스 (naive Bayes) 알고리즘과 서포트 벡터 머신 (support vector machines) 알고리즘과 본 연구에서 제안한 n-그램 증강 나이브 베이스 알고리즘을 비교하였다. 뉴 멕시코 대학의 벤치마크 데이터에 적용해 본 결과에 따르면, n-그램 증강 방법이, n-그램이 나이브 베이스에 직접 적용되는 경우(예: n-그램 특징을 사용하는 일반 나이브 베이스), 생기는 독립성 가정에 대한 위배 문제도 해결하면서, 동시에 n-그램 특징을 사용하는 일반 나이브 베이스보다 더 정확하며, n-그램 특징을 사용하는 SVM과 필적할만한 수준의 침입 탐지기를 생성해 내었다.

  • PDF

Map-Reduce 프로그래밍 모델 기반의 나이브 베이스 학습 알고리즘 (Naive Bayes Learning Algorithm based on Map-Reduce Programming Model)

  • 강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.208-209
    • /
    • 2011
  • 본 논문에서는, 맵-리듀스 모델 기반에서 나이브 베이스 알고리즘으로 학습과 추론을 수행하는 방안에 대해 소개하고자 한다. 이를 위해 Apache Mahout를 이용하여 분산 나이브 베이스 (Distributed Naive Bayes) 학습 알고리즘을 University of California, Irvine (UCI)의 벤치마크 데이터 집합에 적용하였다. 실험 결과, Apache Mahout의 분산 나이브 베이스 학습 알고리즘은 일반적인 WEKA의 나이브 베이스 학습 알고리즘과 그 성능면에서 큰 차이가 없음을 알 수 있었다. 이러한 결과는, 향후 빅 데이터 환경에서 Apache Mahout와 같은 맵-리듀스 모델 기반 시스템이 기계 학습에 큰 기여를 할 수 있음을 나타내는 것이다.

  • PDF

N-그램 증강 나이브 베이스 알고리즘과 일반화된 k-절단 서픽스트리를 이용한 확장가능하고 정확한 침입 탐지 기법 (Scalable and Accurate Intrusion Detection using n-Gram Augmented Naive Bayes and Generalized k-Truncated Suffix Tree)

  • 강대기;황기현
    • 한국정보통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.805-812
    • /
    • 2009
  • 기계 학습을 응용한 많은 침입 탐지 시스템들에서 n-그램 접근 방법이 사용되고 있다. 그러나, n-그램 접근방법은 확장이 어렵고, 주어진 시퀀스에서 획득한 n-그램들이 서로 겹치는 문제들을 가지고 있다. 본 연구에서는 이러한 문제들을 해결하기 위해, 일반화된 k-절단 서픽스트리 (generalized k-truncated suffix tree; k-TST) 기반의 n-그램 증강 나이브 베이스 (n-gram augmented naive Bayes) 알고리즘을 침입 시퀀스의 분류에 적용하여 보았다. 제 안된 시스템의 성능을 평가하기 위해 n-그램 특징들을 사용하는 일반 나이브 베이스 (naive Bayes) 알고리즘과 서포트 벡터 머신(support vector machines) 알고리즘과 본 연구에서 제안한 n-그램 증강 나이브 베이스 알고리즘을 호스트 기반 침입 탐지 벤치마크 데이터와 비교하였다. 공개된 호스트 기반 침입 탐지 벤치마크 데이터인 뉴 멕시코 대학(University of New Mexico)의 벤치마크 데이터에 적용해 본 결과에 따르면, n-그램 증강 방법이, n-그램이 나이브 베이스에 직접 적용되는 경우(예: n-그램 특징을 사용하는 일반 나이브 베이스), 생기는 독립성 가정에 대한 위배의 문제도 해결하면서, 동시에 더 정확한 침입 탐지기를 생성해냄을 알 수 있었다.

커널 밀도 측정에서의 나이브 베이스 접근 방법 (Naive Bayes Approach in Kernel Density Estimation)

  • 샹총량;유샹루;아메드 압둘하킴 알-압시;강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.76-78
    • /
    • 2014
  • 나이브 베이스 학습은 유명하면서도, 빠르면서도 효과적인 지도 학습 방법으로, 다소 잡음을 가진 라벨이 있는 데이터집합을 다루는 데 좋은 성능을 보인다. 그러나, 나이브 베이스의 조건적 독립성 가정은 실세계 데이터를 다루는 데 필요한 특성에 다소 제약사항을 가지게 한다. 지금까지 연구자들이 이 조건적 독립성 가정을 완화시키는 방법들을 제안해 왔다. 이러한 방법들은 어트리뷰트 가중치, 커널 밀도 측정 등이 있다. 본 논문에서, 우리는 커널 밀도 측정과 어트리뷰트 가증치를 이용하여 나이브 베이스의 학습 효과를 개선하기 위한 NB Based on Attribute Weighting in Kernel Density Estimation (NBAWKDE) 이라는 새로운 접근 방법을 제안한다.

  • PDF

고등학생을 위한 과학-기술-사회에 대한 시각 (HS-VOST) 설문조사 결과 분석 (Analysis of high school students' views on science-technology-society (HS-VOSTS) questionnaire results)

  • 강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.201-203
    • /
    • 2011
  • 본 논문에서 우리는 고교생들의 과학-기술-사회에 대한 소양을 알아보기 위한 설문 조사지인 high school students' views on science-technology- society (HS-VOSTS)를 부산의 한 대학교 학생들에게 적용하였고, 그 결과에 대해 데이터 마이닝 알고리즘을 이용하여 분석하였다. 나이브 베이스 알고리즘을 사용하여 나온 예비 결과에 따르면, 나이브 베이스 알고리즘과 같은 데이터 마이닝 알고리즘이 학생들의 설문 데이터에서 자동으로 지식을 발견해 내는 데 효과적으로 이용될 수 있음을 알 수 있었다.

  • PDF

명제화된 어트리뷰트 택소노미를 이용하는 나이브 베이스 학습 알고리즘 (Naive Bayes Learner for Propositionalized Attribute Taxonomy)

  • 강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.406-409
    • /
    • 2008
  • 본 논문에서는 명제화된 어트리뷰트 택소노미를 이용하여 간결하고 강건한 분류기를 생성하는 문제를 고려한다. 이 문제를 해결하기 위해 명제화된 어트리뷰트 택소노미(Propositionalized Attribute Taxonomy)를 이용하는 나이브 베이스 학습 알고리즘(Naive Bayes Learner)인 PAT-NBL을 소개한다. PAT-NBL은 명제화 된 어트리뷰트들의 택소노미를 선험 지식으로 이용하여 간결하고 정확한 분류기를 귀납적으로 학습하는 알고리즘이다. PAT-NBL은 주어진 택소노미에서 지역적으로 최적의 컷(cut)을 찾아내기 위해 하향식 탐색과 상향식 탐색을 사용한다. 찾아낸 최적의 컷은 명제화 된 어트리뷰트 택소노미와 데이터로부터 그에 상응하는 인스턴스 공간(instance space)을 구성할 수 있게 해준다. University of California-Irvine (UCI) 저장소의 기계학습 벤치마크 데이터에 대한 실험 결과를 보면, 제안된 알고리즘이 표준적인 나이브 베이스 학습 알고리즘에 의해 만들어진 분류기들과 비교해 볼 때, 가끔은 보다 간결하고 더 정확한 분류기를 생성해 낸다는 사실을 알 수 있었다.

  • PDF

명제화된 어트리뷰트 택소노미를 이용하는 나이브 베이스 학습 알고리즘 (Propositionalized Attribute Taxonomy Guided Naive Bayes Learning Algorithm)

  • 강대기;차경환
    • 한국정보통신학회논문지
    • /
    • 제12권12호
    • /
    • pp.2357-2364
    • /
    • 2008
  • 본 논문에서는 명제화된 어트리뷰트 택소노미를 이용하여 간결하고 강건한 분류기를 생성하는 문제를 고려한다. 이 문제를 해결하기 위해 명제화된 어트리뷰트 택소노미(Propositionalized Attribute Taxonomy)를 이용하는 나이브 베이스 학습 알고리즘(Naive Bayes Learner)인 PAT-NBL을 소개한다. PAT-NBL은 명제화된 어트리뷰트들의 택소노미를 선험 지식으로 이용하여 간결하고 정확한 분류기를 귀납적으로 학습하는 알고리즘이다. PAT-NBL은 주어진 택소노미에서 지역적으로 최적의 컷(cut)을 찾아내기 위해 하향식 탐색과 상향식 탐색을 사용한다. 찾아낸 최적의 컷은 명제화된 어트리뷰트 택소노미와 데이터로부터 그에 상응하는 인스턴스 공간(instance space)을 구성 할 수 있게 해준다. University of California-Irvine (UCI) 저장소의 기계학습 벤치마크 데이터에 대한 실험 결과를 보면, 제안된 알고리즘이 표준적인 나이브 베이스 학습 알고리즘에 의해 만들어진 분류기들과 비교해 볼 때, 가끔은 보다 간결하고 더 정확한 분류기를 생성해 낸다는 사실을 알 수 있었다.

나이브 베이스에서의 커널 밀도 측정과 상호 정보량 (Mutual Information in Naive Bayes with Kernel Density Estimation)

  • 샹총량;유샹루;강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.86-88
    • /
    • 2014
  • 나이브 베이스가 가지는 가정은 실세계 데이터를 분류함에 있어 해로운 효과를 보이곤 한다. 이러한 가정을 완화하기 위해, 우리는 Naive Bayes Mutual Information Attribute Weighting with Smooth Kernel Density Estimation (NBMIKDE) 접근 방법을 소개한다. NBMIKDE는 애트리뷰트를 위한 스무드 커널과 상호 정보량 측정값을 기반으로 하는 어트리뷰트 가중치 기법을 조합한 것이다.

  • PDF

나이브 베이시안 학습에서 정보이론 기반의 속성값 가중치 계산방법 (An Information-theoretic Approach for Value-Based Weighting in Naive Bayesian Learning)

  • 이창환
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제37권6호
    • /
    • pp.285-291
    • /
    • 2010
  • 본 연구에서는 나이브 베이시안 학습의 환경에서 속성의 가중치를 계산하는 새로운 방식을 제안한다. 기존 방법들이 속성에 가중치를 부여하는 방식인데 반하여 본 연구에서는 한걸음 더 나아가 속성의 값에 가중치를 부여하는 새로운 방식을 연구하였다. 이러한 속성값의 가중치를 계산하기 위하여 Kullback-Leibler 함수를 이용하여 가중치를 계산하는 방식을 제안하였고 이러한 가중치들의 특성을 분석하였다. 제안된 알고리즘은 다수의 데이터를 이용하여 속성 가중치 방식과 비교하였고 대부분의 경우에 더 좋은 성능을 제공함을 알 수 있었다.